
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

(Towards) Building Web-Apps

Jonathan Aldrich Bogdan Vasilescu Matt Davis

217-214/514

Administrative
● No quiz today

● HW4 (UI) and HW5 (God Cards) are released!
● HW4 due Fri 3/17
● HW5 due Mon 3/27
● Both include some challenges for extra points!

● Today we will be talking about Web App GUIs

317-214/514

Today
● Deeper into decoupling the front-end/GUI and back-end/logic

○ Architectural Pattern: Model-View-Controller
○ How to Web-App
○ ReactJS & Templates

● Concurrency: Into the abyss
○ A gentle introduction to asynchrony
○ Communication via callbacks
○ Threading in JS

417-214/514

Recall: Separating application core and GUI
● Reduce coupling: do not allow core to depend on UI
● Create and test the core without a GUI

Core

GUI

CoreTests

GUITests

517-214/514

Recall: Separating application core and GUI
● Reduce coupling: do not allow core to depend on UI
● Create and test the core without a GUI

Core

GUI

CoreTests

GUITestsWhat design goals does this further?

617-214/514

● Let the Game tell all interested components about updates
○ Use the Observer pattern to facilitate communication while preserving

decoupling

Recall: Single-Page yet Decoupled TicTacToe

https://refactoring.guru/design-patterns/observer

717-214/514

Recall: Client/Server

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Client-Server_overview#anatomy_of_a_dynamic_request

817-214/514

Recall: Client/Server TicTacToe
● TicTacToe with TS-Express

○ Two folders: ‘src’ and ‘views’
○ ‘views’ contains a template file
○ ‘src’ contains a server →

and a game.
● The game knows nothing about

the UI
○ Nor does the UI talk to the game
○ The server decouples them

917-214/514

Notice how we’ve begun to more explicitly
separate out the HTML from the logic.

1017-214/514

An architectural pattern: Model-View-
Controller (MVC)

Manage inputs from user:
mouse, keyboard, menu, etc.

Manage display of
information on the screen

Manage data related to the
application domain

1117-214/514

MVC is ubiquitous
Separates:

● Model: data organization
○ Interface to the database

● View: visual representation (typically HTML)
○ Often called templates in web-dev; “view” is a bit overloaded

● Controller: intermediary between client and model/view
○ Typically asks model for data, view for HTML

1217-214/514

Model-View-Controller (MVC)
Passive model

Active model

http://msdn.microsoft.com/en-us/library/ff649643.aspx

1317-214/514

Model-View-Controller in TicTacToe?
Let’s return to the ts-express version
+ talk about how the view gets updated

https://overiq.com/django-1-10/mvc-pattern-and-django/

1417-214/514

Web Apps are Applications Served via the Web
● Obvious, I know
● The key challenge: can’t run everything on the client. Instead:

○ Multiple “tiers”: presentation (front-end), logic/application (server), data
(e.g., DB) layers.

■ MVC is a popular choice for how to connect these
■ Other ways to distribute these layers exist – we’ll talk about a few soon
■ More tiers are possible too; out of scope for this class

○ Front-end/back-end separation via a communication layer
■ Which creates fun communication problems – more later.

1517-214/514

Updating the View (or: How to Web App?)
● Let’s avoid generating HTML from scratch on every call

○ Map requests to handler code
■ Fetch data, process

○ Generate and return HTML
■ Often processed using a template library

1617-214/514

How to Web App?
● Let’s avoid generating HTML from scratch on every call

○ Map requests to handler code
■ Fetch data, process

○ Generate and return HTML
● Historically: PHP

○ Modifies HTML pages server-side on request; strong ties to SQL

1717-214/514

How to Web App?
● Let’s avoid generating HTML from scratch on every call

○ Map requests to handler code
■ Fetch data, process

○ Generate and return HTML
● Or use a framework

○ Python: Flask, Django
○ NodeJS: Express
○ Spring for Java
○ Many others, differences in weight, features
○ React.js

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Web_frameworks

1817-214/514

Model View Controller in Santorini?

https://overiq.com/django-1-10/mvc-pattern-and-django/

1917-214/514

Model View Controller in Santorini

https://overiq.com/django-1-10/mvc-pattern-and-django/

Game
(God
Cards)

Board,
Tower,
Player

HTML
Template
Engine

2017-214/514

Client-Server Programming forces Frontend-
Backend Separation

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

Browser can call web server, but not the other way around
Browser needs to pull for updates
Browser can request entire page, or just additional content (ajax,
REST api calls, …)

information

2217-214/514

TicTacToe

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

JSON

NanoHTTPd

/newgame

2517-214/514

Some alternatives
Is this needlessly complicated?

2617-214/514

Core & Gui in same environment
JavaScript frontend and backend together in browser

(e.g. using browserify) – generally single threaded*!

Java Swing GUI running in same VM as core logic -- multi threaded

Core logic could directly modify GUI

Backend (Java):
Data, logic,
rendering

Frontend (Swing):
Text, buttons

call method, update state

update text,
deactivate buttons

* WebWorkers do allow for some threading for longer-running tasks

2717-214/514

Avoid Core to Gui coupling

Never call the GUI from the Core

Update GUI after action (pull) or use observer pattern instead to
inform GUI of updates (push)

Backend (Java):
Data, logic,
rendering

Frontend (Swing):
Text, buttons

call method, update state

update text,
deactivate buttons

2817-214/514

GUI Code in the Backend

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

Typically there is some GUI code in Backend (rendering/view)
Could also send entire program state to frontend (e.g, json) and
render there with JavaScript

2917-214/514

Where to put GUI Logic?
Example: Deactivate undo button in first round of TicTacToe,
deactivate game buttons after game won

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

Option 1: All rendering in backend, update/refresh entire page after every action–simpler
Option 2: Some logic in frontend, use backend for checking–fewer calls, more responsive

3017-214/514

Core Logic in Frontend?
Could move core logic largely to client, minimize backend interaction

Downside?

Backend
(Java/Node):
shared state only

Frontend
(Browser, HTML,
JavaScript):
data, logic,
rendering

(React and other frameworks make it easy to introduce logic in the frontend; avoid tangling all core logic
with GUI)

3117-214/514

Core Logic in Frontend?
Could move core logic largely to client, minimize backend interaction

Can frontend be trusted? Need to replicate core in front and backend?

Backend
(Java/Node):
shared state only

Frontend
(Browser, HTML,
JavaScript):
data, logic,
rendering

(React and other frameworks make it easy to introduce logic in the frontend; avoid tangling all core logic
with GUI)

3217-214/514

TicTacToe

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

JSON

NanoHTTPd

/newgame

???

3317-214/514

TicTacToe

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

JSON

NanoHTTPd

/newgame

ReactJS

3417-214/514

ReactJS

3517-214/514

ReactJS
Popular frontend library by Meta / Facebook

Template library and state management

(Not a reactive programming library, though it adopts some similar
ideas – we’ll get back to reactive programming)

3617-214/514

ReactJS Overview
Composition of Components

App

PanelPanel

 Label Input Field Label Button

3717-214/514

ReactJS Overview
Composition of Components

What design pattern
does this remind

you of?
App

PanelPanel

 Label Input Field Label Button

3817-214/514

ReactJS Overview
Composition of Components My App

Enter your name

Now push the button
Submit

(Rendered Web Page)

App

PanelPanel

 Label Input Field Label Button

3917-214/514

ReactJS Overview
Composition of Components App

Panel

Panel

Input Field

Heading

Heading

Button

App

Panel

Panel

Input Field

Heading

Heading

Button

Each Component

Properties
(read-only)

App

PanelPanel

 Label Input Field Label Button

4017-214/514

ReactJS Overview
Composition of Components App

Panel

Panel

Input Field

Heading

Heading

Button

App

Panel

Panel

Input Field

Heading

Heading

Button

Each Component

Properties
(read-only)

App

PanelPanel

 Label Input Field Label Button

- State
- Template

4117-214/514

ReactJS Overview
Composition of Components App

Panel

Panel

Input Field

Heading

Heading

Button

App

Panel

Panel

Input Field

Heading

Heading

Button

Each Component

Properties
(read-only)

render()
(rendered html)

App

PanelPanel

 Label Input Field Label Button

- State
- Template

Now push the button
Submit

4217-214/514

ReactJS Overview
Composition of Components App

Panel

Panel

Input Field

Heading

Heading

Button

App

Panel

Panel

Input Field

Heading

Heading

Button

Each Component

Properties
(read-only)

(notify)
Observed

Eventsrender()
(rendered html)

New Event
Subscriptions

(register)
- State
- Template

App

PanelPanel

 Label Input Field Label Button

Now push the button
Submit

4317-214/514

Two Different ReactJS Component Types
App

Panel

Panel

Input Field

Heading

Heading

Button

App

Panel

Panel

Input Field

Heading

Heading

Button

Each Component

Properties
(read-only)

render()
(rendered html)

● Class-based
○ Implemented as a class
○ Fully functional
○ Will use these tomorrow

● Function-based
○ Implemented as a function
○ Originally lacked state,lifecycle
○ But now fully-functional using

React “hooks” (e.g., useState())

● Tomorrow in Recitation: You’ll use class-based components
● In the following slides we’ll use a mix of both component types

- State
- Template

(notify)
Observed

Events

New Event
Subscriptions

(register)

4417-214/514

Components with
ReactJS

Describe rendering of HTML,
inputs given as objects

JSX language extension to
embed HTML in JS

function formatName(user) {
return user.firstName + ' ' +

user.lastName;
}

const user = {
firstName: 'Harper',
lastName: 'Perez'

};

const element = (
<h1>Hello, {formatName(user)}!</h1>

);

ReactDOM.render(
element,
document.getElementById('root')

);

Try it: https://reactjs.org/redirect-to-
codepen/introducing-jsx

https://reactjs.org/redirect-to-codepen/introducing-jsx
https://reactjs.org/redirect-to-codepen/introducing-jsx

4517-214/514

Composing
Components

Nest templates

Pass arguments (properties)
between templates

function Welcome(props) {

return <h1>Hello, {props.name}</h1>;

}

function App() { return (

<div>

<Welcome name="Sara" />

<Welcome name="Edite" />

</div>

);}

ReactDOM.render(

<App />,

document.getElementById('root')

);

Try it: https://reactjs.org/redirect-to-
codepen/components-and-
props/composing-components

https://reactjs.org/redirect-to-codepen/components-and-props/composing-components
https://reactjs.org/redirect-to-codepen/components-and-props/composing-components
https://reactjs.org/redirect-to-codepen/components-and-props/composing-components

4617-214/514

Components with
State
Class notation instead of
function

If state changes, page is re-
rendered

class Toggle extends React.Component {

constructor(props) {

super(props);

this.state = {isToggleOn: true};

this.handleClick = this.handleClick.bind(this);

}

handleClick() {

this.setState(prevState => ({

isToggleOn: !prevState.isToggleOn

}));

}

render() { return (

<button onClick={this.handleClick}>

{this.state.isToggleOn ? 'ON' : 'OFF'}

</button>

); }

}

ReactDOM.render(

<Toggle />,

document.getElementById('root')

);

Try it:
https://codepen.io/gaearon/pen/xE
mzGg?editors=0010

https://codepen.io/gaearon/pen/xEmzGg?editors=0010
https://codepen.io/gaearon/pen/xEmzGg?editors=0010

4717-214/514

ReactJS Components
Can use arbitrary JavaScript code

Properties are read-only

State is mutable and observed for re-rendering (state updates are
asynchronous)

Re-rendering is optimized and asynchronous, will re-render inner
components too if their properties change

4817-214/514

ReactJS and Core Logic
React makes it easy to add functionality in GUI

This really tangles GUI and logic (violating separation argued for previously)

Suggestion: Use React state primarily for UI-related logic (e.g.,
selecting workers) and keep the core logic in the backend or as a
separate library -- be very explicit about what information is shared

4917-214/514

Connecting React
to Some Core
Use observer pattern to let
react component observe
changes

Encapsulate in useEffect()
hook

function App() {

const [data, setData] =

React.useState(null);

React.useEffect(() => {

function handleStatusChange(e) {

setData(e.updatedData);

}

CoreAPI.subscribe(handleStatChange);

return () => {

CoreAPI.unsubscribe(handleStatChange);

};

});

return (

<div>/* using state in data */</div>

Further discussion:
https://reactjs.org/docs/hooks-
custom.html

https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-custom.html

5017-214/514

Connecting React
to backend
Return json from server
backend and store as
component state

function App() {

const [data, setData] =

React.useState(null);

React.useEffect(() => {

fetch("/api")

.then((res) => res.json())

.then((data) =>

setData(data.message));

}, []);

return (

<div>/* using state in data */</div>

);

}

Full example:
https://www.freecodecamp.org/new
s/how-to-create-a-react-app-with-a-
node-backend-the-complete-guide/

https://www.freecodecamp.org/news/how-to-create-a-react-app-with-a-node-backend-the-complete-guide/
https://www.freecodecamp.org/news/how-to-create-a-react-app-with-a-node-backend-the-complete-guide/
https://www.freecodecamp.org/news/how-to-create-a-react-app-with-a-node-backend-the-complete-guide/

5117-214/514

For Homework 4
● You don’t have to use a web app framework

○ The important thing is to decouple the GUI from the backend
○ There are many ways to do this

● We show you how to use React in Rec07
○ Many other template engines and frontend frameworks exists (e.g., Vue,

Angular, …)
○ React adds complexity but also easy updates reacting to state changes
○ We show React.js because it is common today

5217-214/514

● Decoupling improves design
○ MVC-like approaches are commonplace

● We’ve talked about:
○ Back-end: extensively
○ Front-end: last few classes
○ Controllers, servers

● What are we missing?

Recapping: Where Are We?

5317-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

What have we not yet talked about? ^

Jonathan Aldrich Bogdan Vasilescu Matt Davis

5417-214/514

How Do We Talk?
These arrows hide a complicated truth:
The client is a separate computer

○ (The server is often many computers too!)

And talking to another computer
is hard

5517-214/514

How Do We Talk?
Talking to another computer is hard

● Why? We already covered
HTTP (GET/POST), right?

5617-214/514

Suppose Everything were Synchronous
That is, when we call something, we wait for the return, doing
nothing until that happens. So HTTP is just like any other method
call.

Let’s try that out!

5717-214/514

Suppose Everything were Synchronous
Two demonstrations:

1. Active waiting – what happens to the webpage if a request
takes a long time?
a. Not great! Let’s talk about threading next

Note: I’m not showing the code here because it is contrived

5817-214/514

Suppose Everything were Synchronous
Two demonstrations:

1. Active waiting – what happens to the webpage if a request
takes a long time?
a. Not great! Let’s talk about threading next

2. The alternative: allowing other execution to happen
a. New and exciting problems :) Need to handle concurrency

Note: I’m not showing the code here because it is contrived

5917-214/514

● The general concept of things happening outside the main flow
○ Recall the start of this class: we don’t always control when things happen.
○ Nor do we want to wait for them

● We use an asynchronous method call:
○ Normally, when we need to do work away from the current application;
○ And we don't want to block our application while awaiting the response

Asynchrony

6017-214/514

Asynchrony in User Interfaces

What happens here:

document.addEventListener('click', () => console.log('Clicked!'))

6117-214/514

Asynchrony in User Interfaces
Callback functions

● Perhaps the building blocks of the internet’s UI.
● Specifies work that should be done once something happens

○ Called asynchronously from the literal flow of the code
○ Not concurrent: JS is single-threaded

document.addEventListener('click', () => {
console.log('Clicked!'); console.log('Clicked again!'); })

6217-214/514

Two main components:

● Memory Heap — this is where the
memory allocation happens

● Call Stack — this is where your
stack frames are as your code
executes

The JavaScript Engine (e.g., V8)

6317-214/514

Engine plus:

● Web APIs — provided by
browsers, like the DOM,
AJAX, setTimeout and more.

● Event loop

● Callback queue

The JavaScript Runtime

6417-214/514

The Call Stack
Is a data structure that records where in the program
we are. Each entry is called a Stack Frame.

function multiply(x, y) {
return x * y;

}
function printSquare(x) {

var s = multiply(x, x);
console.log(s);

}
printSquare(5);

6517-214/514

Aside: The Call Stack can overflow
function foo() {

foo();
}
foo();

6617-214/514

What happens when things are slow?
JavaScript is single threaded
(single Call Stack).

Problem: while the Call Stack has
functions to execute, the browser
can’t actually do anything else —
it’s getting blocked.

6717-214/514

What happens when things are slow?
function task(message) {

// emulate time consuming task
let n = 10000000000;

while (n > 0){
n--;

}
console.log(message);

}

console.log('Start script...');
task('Download a file.');
console.log('Done!');

JavaScript is single threaded
(single Call Stack).

Problem: while the Call Stack has
functions to execute, the browser
can’t actually do anything else —
it’s getting blocked.

Start script...
Download a file.
Done!

6817-214/514

function task(message) {
// emulate time consuming task
let n = 10000000000;
while (n > 0){

n--;
}
console.log(message);

}

console.log('Start script...');
setTimeout(() => {

task('Download a file.');
}, 1000);
console.log('Done!');

By far the most common way to
express and manage asynchronicity
in JavaScript programs.

Solution: Callbacks

Start script...
Done!
Download a file.

6917-214/514

The Event Loop

The Event Loop monitors the Call Stack and the Callback
Queue.

If the Call Stack is empty, the Event Loop will take the first event
from the queue and will push it to the Call Stack, which
effectively runs it.

7017-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {

console.log('cb1');
}, 5000);
console.log('Bye');

The state is clear.

7117-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {

console.log('cb1');
}, 5000);
console.log('Bye');

console.log('Hi'); is added to the
Call Stack.

7217-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {

console.log('cb1');
}, 5000);
console.log('Bye');

console.log('Hi'); is executed.

7317-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {

console.log('cb1');
}, 5000);
console.log('Bye');

console.log('Hi'); is removed from
the Call Stack.

7417-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {

console.log('cb1');
}, 5000);
console.log('Bye');

setTimeout(function cb1() {...});
is added to the Call Stack.

7517-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {

console.log('cb1');
}, 5000);
console.log('Bye');

setTimeout(function cb1() {...});
is executed.

The browser creates a timer as part of
the Web APIs. It will handle the
countdown for you.

7617-214/514

setTimeout(function cb1() {...});
itself is complete and is removed from
the Call Stack

The Event Loop
console.log('Hi');
setTimeout(function cb1() {

console.log('cb1');
}, 5000);
console.log('Bye');

7717-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {

console.log('cb1');
}, 5000);
console.log('Bye');

console.log('Bye'); is added to the
Call Stack.

7817-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {

console.log('cb1');
}, 5000);
console.log('Bye');

console.log('Bye'); is executed.

7917-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {

console.log('cb1');
}, 5000);
console.log('Bye');

console.log('Bye'); is removed
from the Call Stack.

8017-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {

console.log('cb1');
}, 5000);
console.log('Bye');

After at least 5000 ms, the timer
completes and it pushes the cb1
callback to the Callback Queue.

8117-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {

console.log('cb1');
}, 5000);
console.log('Bye');

The Event Loop takes cb1 from the
Callback Queue and pushes it to the
Call Stack.

8217-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {

console.log('cb1');
}, 5000);
console.log('Bye');

cb1 is executed and adds
console.log('cb1'); to the Call
Stack.

8317-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {

console.log('cb1');
}, 5000);
console.log('Bye');

console.log('cb1'); is executed

8417-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {

console.log('cb1');
}, 5000);
console.log('Bye');

console.log('cb1'); is removed
from the Call Stack.

8517-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {

console.log('cb1');
}, 5000);
console.log('Bye');

cb1 is removed from the Call Stack.

8617-214/514

“Callback Hell”?
● Issue caused by coding

with complex nested
callbacks.

● Every callback takes an
argument that is a result
of the previous callbacks.

Let’s imagine we’re trying to make a burger:

1. Get ingredients
2. Cook the beef
3. Get burger buns
4. Put the cooked beef between the buns
5. Serve the burger

8717-214/514

“Callback Hell”?
● Issue caused by coding

with complex nested
callbacks.

● Every callback takes an
argument that is a result
of the previous callbacks.

const makeBurger = () => {
const beef = getBeef();
const patty = cookBeef(beef);
const buns = getBuns();
const burger = putBeefBetweenBuns(buns, beef);
return burger;

};

const burger = makeBurger();
serve(burger);

If synchronous:

8817-214/514

“Callback Hell”?
● Issue caused by coding

with complex nested
callbacks.

● Every callback takes an
argument that is a result
of the previous callbacks.

const makeBurger = nextStep => {
getBeef(function (beef) {
cookBeef(beef, function (cookedBeef) {
getBuns(function (buns) {
putBeefBetweenBuns(buns, beef, function(burger) {
nextStep(burger)

})
})

})
})

}

// Make and serve the burger
makeBurger(function (burger) => {
serve(burger)

})

If asynchronous:

8917-214/514

● Promises
○ a way to write async code that still appears as though it is executing

in a top-down way.
○ handles more types of errors due to encouraged use of try/catch

style error handling.
● Generators

○ let you 'pause' individual functions without pausing the state of the
whole program.

● Async functions
○ since ES7
○ further wrap generators and promises in a higher-level syntax

Modern Alternatives (to be revisited)

9017-214/514

● https://blog.sessionstack.com/how-does-javascript-actually-work-part-1-b0bacc073cf
● https://blog.sessionstack.com/how-javascript-works-event-loop-and-the-rise-of-async-programming-

5-ways-to-better-coding-with-2f077c4438b5
● https://www.javascripttutorial.net/javascript-event-loop/
● https://www.freecodecamp.org/news/how-to-deal-with-nested-callbacks-and-avoid-callback-hell-

1bc8dc4a2012/

Useful References

https://blog.sessionstack.com/how-does-javascript-actually-work-part-1-b0bacc073cf
https://blog.sessionstack.com/how-javascript-works-event-loop-and-the-rise-of-async-programming-5-ways-to-better-coding-with-2f077c4438b5
https://blog.sessionstack.com/how-javascript-works-event-loop-and-the-rise-of-async-programming-5-ways-to-better-coding-with-2f077c4438b5
https://www.javascripttutorial.net/javascript-event-loop/
https://www.freecodecamp.org/news/how-to-deal-with-nested-callbacks-and-avoid-callback-hell-1bc8dc4a2012/
https://www.freecodecamp.org/news/how-to-deal-with-nested-callbacks-and-avoid-callback-hell-1bc8dc4a2012/

9117-214/514

Forming Design Patterns
● We’ve seen:

○ Function-based dispatch (callbacks)
○ Using queues to manage asynchronous events

● Some of the most common building blocks of concurrent,
distributed systems

9217-214/514

Summary
● We’re not in Kansas anymore

○ Real-world programs aren’t only back-end, like in HW3, nor only front-
end, like TicTacToe with browserify, nor some entangled mix, like
FlashCards.

● To balance a front-end and back-end, we need:
○ Good design, based on decoupling the UI and back-end

■ We talked about MVC, Client-server
○ Structures to implement and handle concurrency

■ We talked about callbacks
○ Way more concurrency in upcoming lectures

