
117-214/514

Principles of Software Construction: 
Objects, Design, and Concurrency

Asynchrony and Concurrency

Jonathan Aldrich Bogdan Vasilescu



217-214/514

● No class / OH next week
● Homeworks 4 & 5 out

○ Two milestones, 
○ ~One week each (not counting break).
○ Depending on your hw3 solution (the starting point) it might be more work. 

Budget time accordingly 

Administrivia



317-214/514

Recall: Event-based programming

● Style of programming where control-flow is driven by (usually 
external) events

public void performAction(ActionEvent e) {
    List<String> lst = Arrays.asList(bar);
    foo.peek(42)
}

public void performAction(ActionEvent e) {
    bigBloatedPowerPointFunction(e);
    withANameSoLongIMadeItTwoMethods(e);
    yesIKnowJavaDoesntWorkLikeThat(e);
}

public void performAction(ActionEvent e) {
    List<String> lst = Arrays.asList(bar);
    foo.peek(40)
}



417-214/514

Talking to another computer is hard

● Because the other computer has a
will of its own
○ We can’t “block” it while it 

waits for an answer, like in a
method call, since that can
take a long time.

○ We can’t trust it not to make changes that will
affect the action to be taken on return.

Recall: How Do We Talk?



517-214/514

The need for concurrency with file I/O
Key chart:

https://formulusblack.com/blog/compute-performance-distance-of-data-as-a-measure-of-latency/



617-214/514

You need to assume an asynchronous world

● Modern computers aren’t one logical unit, they are many 
(cores, processors, threads)
○ Not using them would be wasteful

● Web apps can be distributed across thousands of servers, 
multiple client devices
○ For good reason; we’ll talk about microservices later in the course

● A billion users may be talking to your database at once
○ How would you implement having a “unique visitor” counter on 

google.com?



717-214/514

Many scenarios where we want concurrency

● User interfaces
○ Events can arrive any time

● File I/O
○ Offload work to disk/network/... handler

● Background work
○ Periodically run garbage collection, check health of service

● High-performance computing
○ Facilitate parallelism and distributed computing



817-214/514

Today
● Formalizing notions of concurrency

○ Asynchrony, threads, concurrency vs. parallelism
○ Introducing promises, related patterns

● Discussing risks in concurrent programs
○ Atomicity
○ Liveness
○ Performance
○ Some programming constructs that help mitigate these (mostly Java)



917-214/514

Asynchrony

9



1017-214/514

● The general concept of things happening outside the main flow
○ Recall the start of this class: we don’t always control when things happen.
○ Nor do we want to wait for them

● We use an asynchronous method call: 
○ Normally, when we need to do work away from the current application;

○ And we don't want to wait and block our application awaiting the response

Asynchrony



1117-214/514

● Thread: instructions executed in sequence
○ Within a thread, everything happens in order.
○ A thread can start, sleep, and die.
○ You often work on the “main” thread.

Three concepts of importance



1217-214/514

● Thread: instructions executed in sequence
○ Within a thread, everything happens in order.
○ A thread can start, sleep, and die.
○ You often work on the “main” thread.

● Concurrency: multiple threads running at the same time
○ Not necessarily executing in parallel

Three concepts of importance



1317-214/514

Aside: Concurrency vs. parallelism
● Concurrency without parallelism:

● Concurrency with parallelism:
Thread1
Thread2
Thread3

Thread1
Thread2
Thread3



1417-214/514

● Thread: instructions executed in sequence
○ Within a thread, everything happens in order.
○ A thread can start, sleep, and die.
○ You often work on the “main” thread.

● Concurrency: multiple threads running at the same time
○ Not necessarily executing in parallel

● Asynchrony: computation happening outside the main flow

Three concepts of importance



1517-214/514

● Short for thread of execution
○ A common building block in concurrent programming

● Multiple threads can run in the same program concurrently*
● Threads share the same address space

○ Changes made by one thread may be read by others

● Multi-threaded programming
○ Also known as shared-memory multiprocessing

* In languages that support it, like Java

What is a thread?



1617-214/514

Aside: Threads vs. Processes
● Threads are lightweight; processes heavyweight

● Threads share address space; processes have own

● Threads require synchronization; processes don’t
○ Threads hold locks while mutating objects

● It’s unsafe to kill threads; safe to kill processes



1717-214/514

Concurrency in the single-threaded 
JavaScript



1817-214/514

Concurrency with file I/O
We’ve mostly used synchronous IO so far

● Works fine if ‘fetch’ is synchronous
○ But if other work is waiting...

let image: Image = fetch('myImage.png');
display(image);



1917-214/514

Concurrency with file I/O
We’ve mostly used synchronous IO so far

● Works fine if ‘fetch’ is synchronous
○ But if other work is waiting...

 

● It’d be nice if we could continue other work
○ How to make it work if ‘fetch’ is asynchronous?

let image: Image = fetch('myImage.png');
display(image);



2017-214/514

function task(message) {
    // emulate time consuming task
    let n = 10000000000;
    while (n > 0){
        n--;
    }
    console.log(message);
}

console.log('Start script...');
setTimeout(() => {
    task('Download a file.');
}, 1000);
console.log('Done!');

By far the most common way to 
express and manage asynchronicity 
in JavaScript programs.

Back to Callbacks

Start script...
Done!
Download a file.



2117-214/514

Aside: setTimeout(...) setTimeout(myCallback, 1000);

Doesn’t mean that myCallback will be executed in 1,000 ms. 

Rather, in 1,000 ms, myCallback will be added to the event loop 
queue. 

The queue, however, might have other events that have been 
added earlier — your callback will have to wait.



2217-214/514

Aside: setTimeout(...) console.log('Hi');
setTimeout(function() {
    console.log('callback');
}, 0);
console.log('Bye');

Although the wait time is set to 0 ms, the result in the browser 
console will be:
Hi
Bye
callback



2317-214/514

A function that does something asynchronously should 
provide a callback argument where we put the function 
to run after it’s complete.

From: https://javascript.info/callbacks



2417-214/514

How can we load two scripts sequentially: the first one, 
and then the second one after it?

A natural solution would be to put the second loadScript call inside 
the callback:



2517-214/514

What if we want one more script…?



2617-214/514

Here’s an improved version of loadScript that tracks 
loading errors:



2717-214/514

It calls callback(null, script) for successful load and 
callback(error) otherwise.



2817-214/514

“Callback hell” / “Pyramid of doom”?

Issue caused by coding 
with complex nested 
callbacks.



2917-214/514

Remember this? “Coding like the Tour de France”
public boolean foo() {
    try {
        synchronized () {
            if () {
            } else {
            }
            for () {
                if () {
                    if () {
                        if () {
                            if ()
                            {
                                if () {
                                    for () {
                                    }
                                }
                            }
                        } else {
                            if () {
                                for () {
                                    if () {
                                    } else {
                                    }
                                    if () {
                                    } else {
                                        if () {
                                        }
                                    }
                                    if () {
                                        if () {
                                            if () {
                                                for () {
                                                }
                                            }
                                        }
                                    } else {
                                    }
                                }
                            } else {
                            }
                        }
                    }
                }
            }

            if () {
            }

https://thedailywtf.com/articles/coding-like-the-tour-de-france 

https://thedailywtf.com/articles/coding-like-the-tour-de-france


3017-214/514

“Callback Hell”?
● Issue caused by coding 

with complex nested 
callbacks. 

● Every callback takes an 
argument that is a result of 
the previous callbacks. 

Let’s imagine we’re trying to make a burger:

1. Get ingredients
2. Cook the beef
3. Get burger buns
4. Put the cooked beef between the buns
5. Serve the burger



3117-214/514

“Callback Hell”?
● Issue caused by coding 

with complex nested 
callbacks. 

● Every callback takes an 
argument that is a result of 
the previous callbacks. 

const makeBurger = () => {
  const beef = getBeef();
  const patty = cookBeef(beef);
  const buns = getBuns();
  const burger = putBeefBetweenBuns(buns, beef);
  return burger;
};

const burger = makeBurger();
serve(burger);

If synchronous:



3217-214/514

“Callback Hell”?
● Issue caused by coding 

with complex nested 
callbacks. 

● Every callback takes an 
argument that is a result of 
the previous callbacks. 

const makeBurger = nextStep => {
  getBeef(function (beef) {
    cookBeef(beef, function (cookedBeef) {
      getBuns(function (buns) {
        putBeefBetweenBuns(buns, beef, function(burger) {
          nextStep(burger)
        })
      })
    })
  })
}

// Make and serve the burger
makeBurger(function (burger) => {
  serve(burger)
})

If asynchronous:



3317-214/514

Design Goals
● What design goals do callbacks support & hurt?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...



3417-214/514

Design Goals
● What design goals do callbacks support & hurt?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...



3517-214/514

● Promises
○ A way to write async code that still appears as though it is executing 

in a top-down way.
○ Handles more types of errors due to encouraged use of try/catch 

style error handling.
● Generators

○ Let you 'pause' individual functions without pausing the state of the 
whole program.

● Async functions
○ Since ES7
○ Further wrap generators and promises in a higher level syntax

Modern Alternatives



3617-214/514

Promises
The executor runs automatically and 
attempts to perform a job. When it is 
finished with the attempt, it calls 
resolve if it was successful or reject 
if there was an error.



3717-214/514

Promises
These are callbacks! Promises 
wrap callbacks. You can often 
“promisify” regular functions with 
success/reject callbacks



3817-214/514

Let’s rewrite the previous loadScript using promises



3917-214/514

Using promises



4017-214/514

Promises Callbacks
Promises allow us to do things in the natural order. 
First, we run loadScript(script), and .then we 
write what to do with the result.

We must have a callback function at our 
disposal when calling loadScript(script, 
callback). In other words, we must know 
what to do with the result before loadScript 
is called.

We can call .then on a Promise as many times as 
we want. 

There can be only one callback.

Using callbacks vs promises



4117-214/514

Promises chaining



4217-214/514

Returning promises
Allows us to build chains of asynchronous actions.



4317-214/514

Allows us to build chains of asynchronous actions.

Here each loadScript call returns a promise, and the next .then 
runs when it resolves. Then it initiates the loading of the next script. 
So scripts are loaded one after another.

Returning promises



4417-214/514

Solving “callback hell” with promises

let bunPromise = getBuns();
let cookedBeefPromise = getBeef()
    .then(beef => cookBeef(beef));
// Resolve both promises in parallel
Promise.all([bunPromise, cookedBeefPromise])
    .then(([buns, beef]) => putBeefBetweenBuns(buns, beef))
    .then(burger => serve(burger))

● No more deep nesting
● Easy to follow control-flow

● Promises can also be 
resolved in parallel

Recall the previous cooking-a-burger example:



4517-214/514

Error handling with promises
When a promise rejects, the control jumps to the closest rejection handler. 



4617-214/514

Promises
A promise divides the control flow into two or more branches:

● A “fulfill” branch, if things went right
● A “reject” branch, if things break

function task() { console.log("task"); return true; }

let p = new Promise((resolve, reject) => resolve(task()))   // Prints "task";

p.then(res => console.log(res))    // Prints "true"

 .catch(err => console.log(err));



4717-214/514

Promises
These are callbacks! Promises wrap callbacks. You can often 
“promisify” regular functions with success/reject callbacks

function task() { console.log("task"); return true; }

let p = new Promise((resolve, reject) => resolve(task()))   // Prints "task";

p.then(res => console.log(res))    // Prints "true"

 .catch(err => console.log(err));



4817-214/514

Promises: Guarantees
● Callbacks are never invoked before the current run of the event 

loop completes
● Callbacks are always invoked, even if (chronologically) added 

after asynchronous operation completes
● Multiple callbacks are called in order



4917-214/514

Design Goals
● What design goals do promises support & hurt?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...



5017-214/514

Design Goals
● What design goals do promises support & hurt?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...



5117-214/514

Promises can still make for somewhat messy 
exception handling

1. Multiple catches and thens can become hard to read.
(and don’t always behave as you’d expect)

2. Completely different error handling for sync & async failures

● Better than in nested callbacks
● But async/await makes this cleaner still



5217-214/514

Next step: async + await
● Async functions always return a promise

○ The keyword await makes JavaScript wait until that promise 
settles and returns its result.



5317-214/514

Next step: async + await
● Async functions always return a promise

○ And are allowed to ‘await’ synchronously
○ May wrap concrete values
○ May return rejected promises on exceptions



5417-214/514

Concurrency with file I/O
Asynchronous code requires Promises

● Captures an intermediate state
○ Neither fetched, nor failed; we’ll find out eventually

let imageToBe: Promise<Image> = fetch('myImage.png');
imageToBe.then((image) => display(image))
         .catch((err) => console.log('aw: ' + err));



5517-214/514

Concurrency with file I/O
Asynchronous code requires Promises

● Captures an intermediate state
○ Neither fetched, nor failed; we’ll find out eventually

● Promise-like syntax exists in most languages
○ “Future” in Java

let imageToBe: Promise<Image> = fetch('myImage.png');
imageToBe.then((image) => display(image))
         .catch((err) => console.log('aw: ' + err));



5617-214/514

Concurrency with file I/O
Can save you a lot of time

● An example from Machine Learning
● The usual process:

○ Read data from a filesystem or network
○ Batch samples, send to GPU/TPU/XPU memory
○ Train on-device



5717-214/514

Concurrency with file I/O
An example from Machine Learning

Different devices:



5817-214/514

Stepping back: The Promise Pattern
● Problem: one or more values we will need will arrive later

○ At some point we must wait
● Solution: an abstraction for expected values
● Consequences:

○ Declarative behavior for when results become available
○ Need to provide paths for normal and abnormal execution

■ E.g., then() and catch()
○ May want to allow combinators
○ Need to handle errors from both synchronous and asynchronous origins



5917-214/514

Concurrency in the multi-threaded Java



6017-214/514

Basic concurrency in Java
● An interface representing a task

● A class to execute a task in a thread

makes sure that thread is terminated 
before the next instruction is executed 
by the program

public interface Runnable {
    void run();
}

public class Thread {
    public Thread(Runnable task);
    public void start();
    public void join();  
    …
}



6117-214/514

A simple threads example
public interface Runnable {  // java.lang.Runnable
    public void run();
}

public static void main(String[] args) {
    int n = Integer.parseInt(args[0]);  // Number of threads;

    Runnable greeter = new Runnable() {
        public void run() {
            System.out.println("Hi mom!");
        }
    };
    for (int i = 0; i < n; i++) {
        new Thread(greeter).start();
    }
}



6217-214/514

A simple threads example
public interface Runnable {  // java.lang.Runnable
    public void run();
}

public static void main(String[] args) {
    int n = Integer.parseInt(args[0]);  // Number of threads;

    Runnable greeter = () -> System.out.println("Hi!");
    for (int i = 0; i < n; i++) {
        new Thread(greeter).start();
    }
}



6317-214/514

We are all concurrent programmers
● Java is inherently multithreaded
● In order to utilize our multicore processors, we must write 

multithreaded code
● Good news: a lot of it is written for you

○ Excellent libraries exist (java.util.concurrent)
● Bad news: you still have to understand the fundamentals

○ To use libraries effectively
○ To debug programs that make use of them



6417-214/514

Quiz Time
Lecture 13 quiz on Canvas



6517-214/514

CONCURRENCY HAZARDS
Safety, Liveness, Performance



6617-214/514

Threading Example: Money-grab (1)
public class BankAccount {
    private long balance;

    public BankAccount(long balance) {
        this.balance = balance;
    }
    static void transferFrom(BankAccount source,
                             BankAccount dest, long amount) {
        source.balance -= amount;
        dest.balance   += amount;
    }
    public long balance() {
        return balance;
    }
}



6717-214/514

public static void main(String[] args) throws InterruptedException {
    BankAccount bugs = new BankAccount(1_000_000);
    BankAccount daffy = new BankAccount(1_000_000);
    
    Thread bugsThread = new Thread(()-> {
        for (int i = 0; i < 1_000_000; i++)
            transferFrom(daffy, bugs, 1);
    });
    
    Thread daffyThread = new Thread(()-> {
        for (int i = 0; i < 1_000_000; i++)
            transferFrom(bugs, daffy, 1);
    });
    
    bugsThread.start(); daffyThread.start();
    bugsThread.join(); daffyThread.join();
    System.out.println(bugs.balance() - daffy.balance());
}

Threading Example: Money-grab (2)



6817-214/514

What went wrong?

● Daffy & Bugs threads had a race condition for shared data
○ Transfers did not happen in sequence

● Reads and writes interleaved randomly
○ Random results ensued



6917-214/514

Thread Safety
A class is thread safe if it behaves correctly when accessed from 
multiple threads, regardless of the scheduling or interleaving of the 
execution of those threads by the runtime environment, and with no 
additional synchronization or other coordination on the part of the 
calling code. 



7017-214/514

Thread Safety
● Thread safe means no assumptions required to operate 

correctly with multiple threads.
○ Why was the earlier example not thread-safe?

● If a program is not thread-safe, it can:
○ Corrupt program state (as before)
○ Fail to properly share state (visibility failure)
○ Get stuck in infinite mutual waiting loop (liveness failure, deadlock)



7117-214/514

1. Safety Hazard
● The ordering of operations in multiple threads is unpredictable.

● Unlucky execution of UnsafeSequence.getNext
value→9 9+1→10 value→10

value→9 9+1→10 value→10

A
B

Not atomic

@NotThreadSafe
public class UnsafeSequence {
    private int value;

    public int getNext() {
        return value++;
    }
}



7217-214/514

Atomicity

● An action is atomic if it is indivisible
○ Effectively, it happens all at once

■ No effects of the action are visible until it is complete
■ No other actions have an effect during the action

● In Java, integer increment is not atomic

i++;
1. Load data from variable i

2. Increment data by 1

3. Store data to variable i

is actually



7317-214/514

We are going to need programming tools to 
manage concurrent execution



7417-214/514

JAVA PRIMITIVES: ENSURING 
VISIBILITY AND ATOMICITY



7517-214/514

Synchronization for Safety

● If multiple threads access the same mutable state variable 
without appropriate synchronization, the program is broken. 

● How might we solve this?



7617-214/514

Synchronization for Safety

● If multiple threads access the same mutable state variable 
without appropriate synchronization, the program is broken. 

● Solutions:
a. Don’t have state! But sometimes we need to, so
b. Don’t share state across threads; but, if we need to,
c. Make the state immutable; or if it can’t be,
d. Use synchronization whenever accessing the state variable. 



7717-214/514

Stateless objects are always thread safe
Example: stateless factorizer
● No fields
● No references to fields from other classes
● Threads sharing it cannot influence each other

@ThreadSafe
public class StatelessFactorizer implements Servlet {

    public void service(ServletRequest req, ServletResponse resp) {
        BigInteger i = extractFromRequest(req);
        BigInteger[] factors = factor(i);
        encodeIntoResponse(resp, factors);
    }
}



7817-214/514

Is This Thread Safe?

public class CountingFactorizer implements Servlet {
    private long count = 0;

    public long getCount() { return count; }

    public void service(ServletRequest req, ServletResponse resp) {
        BigInteger i = extractFromRequest(req);
        BigInteger[] factors = factor(i);
        ++count;
        encodeIntoResponse(resp, factors);
    }
}



7917-214/514

Is this thread safe?
@NotThreadSafe 
public class CountingFactorizer implements Servlet {
    private long count = 0;

    public long getCount() { return count; }

    public void service(ServletRequest req, ServletResponse resp) {
        BigInteger i = extractFromRequest(req);
        BigInteger[] factors = factor(i);
        ++count;
        encodeIntoResponse(resp, factors);
    }
}



8017-214/514

Non atomicity and thread (un)safety

@NotThreadSafe
public class UnsafeCountingFactorizer implements Servlet {
    private long count = 0;

    public long getCount() { return count; }

    public void service(ServletRequest req, ServletResponse resp) {
        BigInteger i = extractFromRequest(req);
        BigInteger[] factors = factor(i);
        ++count;
        encodeIntoResponse(resp, factors);
    }
}

value->9 9+1->10 value->10

value->9 9+1->10 value->10

A
B



8117-214/514

Non atomicity and thread (un)safety
● Stateful factorizer

○ Susceptible to lost updates
○ The ++count operation is not atomic (read-modify-write)

@NotThreadSafe
public class UnsafeCountingFactorizer implements Servlet {
    private long count = 0;

    public long getCount() { return count; }

    public void service(ServletRequest req, ServletResponse resp) {
        BigInteger i = extractFromRequest(req);
        BigInteger[] factors = factor(i);
        ++count;
        encodeIntoResponse(resp, factors);
    }
}



8217-214/514

Is This Thread Safe?

public class CountingFactorizer implements Servlet {
    private long count = 0;

    public long getCount() { return count; }

    public void service(ServletRequest req, ServletResponse resp) {
        BigInteger i = extractFromRequest(req);
        BigInteger[] factors = factor(i);
        ++count;
        encodeIntoResponse(resp, factors);
    }
}

“++” is not atomic – it’s read & write



8317-214/514

Fixing the stateful factorizer
@ThreadSafe
public class SafeCountingFactorizer 

implements Servlet {
    @GuardedBy(“this”)
    private long count = 0;

    public long getCount() { 
 synchronized(this){

    return count; 
}

    }

    public void service(ServletRequest req, 
ServletResponse resp) {

        BigInteger i = extractFromRequest(req);
        BigInteger[] factors = factor(i);

synchronized(this) {
    ++count;
}

        encodeIntoResponse(resp, factors);
    }
}

For each mutable 
state variable that 
may be accessed by 
more than one 
thread, all accesses 
to that variable must 
be performed with 
the same lock held. In 
this case, we say that 
the variable is 
guarded by that lock.



8417-214/514

Fixing the stateful factorizer
@ThreadSafe
public class SafeCountingFactorizer 

implements Servlet {
    @GuardedBy(“this”)
    private long count = 0;

    public synchronized long getCount() { 
    return count; 

    }

    public void service(ServletRequest req, 
ServletResponse resp) {

        BigInteger i = extractFromRequest(req);
        BigInteger[] factors = factor(i);

synchronized(this) {
    ++count;
}

        encodeIntoResponse(resp, factors);
    }
}

For each mutable 
state variable that 
may be accessed by 
more than one 
thread, all accesses 
to that variable must 
be performed with 
the same lock held. In 
this case, we say that 
the variable is 
guarded by that lock.



8517-214/514

Fixing the stateful factorizer
@ThreadSafe
public class SafeCountingFactorizer 

implements Servlet {
    @GuardedBy(“this”)
    private long count = 0;

    public synchronized long getCount() { 
    return count; 

    }

    public synchronized void service(
ServletRequest req, 
ServletResponse resp) {

        BigInteger i = extractFromRequest(req);
        BigInteger[] factors = factor(i);

    ++count;
encodeIntoResponse(resp, factors);

    }
}

For each mutable 
state variable that 
may be accessed by 
more than one 
thread, all accesses 
to that variable must 
be performed with 
the same lock held. In 
this case, we say that 
the variable is 
guarded by that lock.



8617-214/514

What’s the difference?
    public synchronized void service(ServletRequest req, 

ServletResponse resp) {
        BigInteger i = extractFromRequest(req);
        BigInteger[] factors = factor(i);

    ++count;
encodeIntoResponse(resp, factors);

    }

 public void service(ServletRequest req, 
ServletResponse resp) {

        BigInteger i = extractFromRequest(req);
        BigInteger[] factors = factor(i);

synchronized(this) {
    ++count;
}

        encodeIntoResponse(resp, factors);
    }



8717-214/514

Private locks
@ThreadSafe
public class SafeCountingFactorizer 

implements Servlet {
    private final Object lock = new Object();
    @GuardedBy(“lock”)
    private long count = 0;

    public long getCount() { 
synchronized(lock){
    return count; 

        }
    }

    public void service(ServletRequest req, 
ServletResponse resp) {

        BigInteger i = extractFromRequest(req);
        BigInteger[] factors = factor(i);

synchronized(lock) {
    ++count;
}

        encodeIntoResponse(resp, factors);
    }
}

For each mutable 
state variable that 
may be accessed by 
more than one 
thread, all accesses 
to that variable must 
be performed with 
the same lock held. In 
this case, we say that 
the variable is 
guarded by that lock.



8817-214/514

We can fix the BankAccount similarly

public class BankAccount {

   private long balance;

   public BankAccount(long balance) {
      this.balance = balance;
   }

   static synchronized void transferFrom(BankAccount source,
                           BankAccount dest, long amount) {
       source.balance -= amount;
       dest.balance   += amount;
   }

   public synchronized long balance() {
       return balance;
   }
}



8917-214/514

Exclusion

Synchronization allows parallelism while
ensuring that certain segments are 
executed in isolation. Threads wait to
acquire lock, which may reduce performance.



9017-214/514

Some Details on “Locks”
● synchronized(lock) { … } synchronizes entire code block 

on object lock; cannot forget to unlock
○ So you can synchronize/lock just a few lines of code

● The synchronized modifier on a method is equivalent to 
synchronized(this) { … } around the entire method body

○ Every Java object can serve as a lock

● At most one thread may own the lock (mutual exclusion)
○ synchronized blocks guarded by the same lock execute atomically 

w.r.t. one another



9117-214/514

2. Liveness Hazard
● Safety: “nothing bad ever happens”
● Liveness: “something good eventually happens”
● Deadlock

○ Infinite loop in sequential programs
○ Thread A waits for a resource that thread B holds exclusively, and B never 

releases it → A will wait forever
■ E.g., Dining philosophers

● Elusive: depend on relative timing of events in different threads



9217-214/514

Deadlock example – what could go wrong?
Two threads: 

A does transfer(a, b, 10)  B does transfer(b, a, 10)

class Account {
  double balance;

  void withdraw(double amount){ balance -= amount; }

  void deposit(double amount){ balance += amount; }

  void transfer(Account from, Account to, double amount){
        synchronized(from) {
            from.withdraw(amount);
            synchronized(to) {
                to.deposit(amount);
            }
        }
  }
}



9317-214/514

Deadlock example
Two threads: 

A does transfer(a, b, 10)  B does transfer(b, a, 10)

Execution trace:
A: lock a (v)
B: lock b (v)
A: lock b (x)
B: lock a (x)
A: wait
B: wait

Deadlock!

class Account {
  double balance;

  void withdraw(double amount){ balance -= amount; }

  void deposit(double amount){ balance += amount; }

  void transfer(Account from, Account to, double amount){
        synchronized(from) {
            from.withdraw(amount);
            synchronized(to) {
                to.deposit(amount);
            }
        }
  }
}



9417-214/514

Could this deadlock?
public class Widget {
    public synchronized void doSomething() {

...
    }
}

public class LoggingWidget extends Widget {
    public synchronized void doSomething() {

System.out.println(toString() + ": calling doSomething");

super.doSomething();
    }
}



9517-214/514

No: Intrinsic locks are reentrant

● A thread can lock the same object again while already 
holding a lock on that object
public class Widget {
    public synchronized void doSomething() {...}
}

public class LoggingWidget extends Widget {
    public synchronized void doSomething() {

System.out.println(toString() + ": calling doSomething");
super.doSomething();

    }
}



9617-214/514

Cooperative thread termination
How long would you expect this to run?

public class StopThread {
    private static boolean stopRequested;

    public static void main(String[] args) throws Exception {
        Thread backgroundThread = new Thread(() -> {
            while (!stopRequested)
                /* Do something */ ;
        });
        backgroundThread.start();

        TimeUnit.SECONDS.sleep(1);
        stopRequested = true;
    }
}



9717-214/514

What could have gone wrong?
● In the absence of synchronization, there is no guarantee as to 

when, if ever, one thread will see changes made by another!

● VMs can and do perform this optimization (“hoisting”):
        while (!done)

            /* do something */ ;

    becomes:
        if (!done)

            while (true)

                /* do something */ ;



9817-214/514

How do you fix it?
public class StopThread {

 @GuardedBy(“StopThread.class”)
    private static boolean stopRequested;

    private static synchronized void requestStop() {
        stopRequested = true;
    }

    private static synchronized boolean stopRequested() {
        return stopRequested;
    }

    public static void main(String[] args) throws Exception {
        Thread backgroundThread = new Thread(() -> {
            while (!stopRequested())
                /* Do something */ ;
        });
        backgroundThread.start();

        TimeUnit.SECONDS.sleep(1);
        requestStop();
    }
}



9917-214/514

3. Performance Hazard
● Liveness: “something good eventually happens”
● Performance: we want something good to happen quickly

● Multi-threading involves runtime overhead:
○ Coordinating between threads (locking, signaling, memory sync)
○ Context switches
○ Thread creation & teardown
○ Scheduling

● Not all problems can be solved faster with more resources
○ One mother delivers a baby in ~9 months



10017-214/514

Amdahl’s law
● The speedup is 

limited by the serial 
part of the program.



10117-214/514

How fast can this run?
● N threads fetch independent tasks from a shared work queue

public class WorkerThread extends Thread {
    ...

    public void run() {
        while (true) {
            try {
                Runnable task = queue.take();
                task.run();
            } catch (InterruptedException e) {
                break; /* Allow thread to exit */
            }
        }
    }
}



10217-214/514

Back to “Blocking”
● Why does JS not have these issues?

○ Atomicity? Shared reality? Safety?



10317-214/514

Back to “Blocking”
● Why does JS not have these issues?

○ Atomicity: no thread can interrupt an action
■ The event loop completely finishes each task

○ Shared reality: no concurrent reads possible
■ Single-threaded by design

○ Safety: obvious.
● But, more burden on developers!



10417-214/514

Designing for Asynchrony & Concurrency
● We are in a new paradigm now

○ We need standardized ways to handle asynchronous and/or concurrent 
interactions

○ This is how design patterns are born
● A lot of powerful syntax for managing concurrency

○ Some discussed today, more in future classes



10517-214/514

Up Next, More Concurrency

● Talk about two more solutions to concurrency hazards:
a. Don’t have state! But sometimes we need to, so
b. Don’t share state across threads; but, if we need to,
c. Make the state immutable; or if it can’t be,
d. Use synchronization whenever accessing the state variable. 

● Immutability is a big concept, can earn you extra credit in HW5!
● Start thinking about Designing for Concurrency



10617-214/514

Summary
● Thinking past the main loop

○ The world is asynchronous
○ Concurrency helps, in a lot of ways
○ Requires revisiting programming model

● Tools & Patterns:
○ Threads are our building blocks
○ Promises help keep asynchronous code readable, offer useful 

guarantees
○ Atomic locks 


