
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency: Safety & Immutability

Jonathan Aldrich Bogdan Vasilescu

217-214/514

Lecture 14 Quiz
On Canvas, no password

317-214/514

Administrative
● Please prep for tomorrow’s recitation

○ See handout on Piazza; need to sign up for an ML API
● Mid-semester grades

○ This assumes that you’ll keep getting the same grades until the end of
the semester. You can change that if you’re unhappy :)

817-214/514

CONCURRENCY HAZARDS
Safety, Liveness, Performance

Quick Recap

917-214/514

1. Safety Hazard
● The ordering of operations in multiple threads is unpredictable.

● Unlucky execution of UnsafeSequence.getNext

value→9 9+1→10 value→10

value→9 9+1→10 value→10

A
B

Not atomic

@NotThreadSafe
public class UnsafeSequence {

private int value;

public int getNext() {
return value++;

}
}

1017-214/514

2. Liveness Hazard
● Safety: “nothing bad ever happens”
● Liveness: “something good eventually happens”
● Deadlock

○ Infinite loop in sequential programs
○ Thread A waits for a resource that thread B holds exclusively, and B never

releases it → A will wait forever
■ E.g., Dining philosophers

● Elusive: depend on relative timing of events in different
threads

1117-214/514

3. Performance Hazard
● Liveness: “something good eventually happens”
● Performance: we want something good to happen quickly

● Multi-threading involves runtime overhead:
○ Coordinating between threads (locking, signaling, memory sync)
○ Context switches
○ Thread creation & teardown
○ Scheduling

● Not all problems can be solved faster with more resources
○ One mother delivers a baby in 9 months

1217-214/514

Synchronization for Safety
● If multiple threads access the same mutable state variable

without appropriate synchronization, the program is broken.
● There are three ways to fix it:

○ Don't share the state variable across threads;
○ Make the state variable immutable; or
○ Use synchronization whenever accessing the state variable.

1317-214/514

Outlook
● Concurrency hazards:

○ Safety
○ Liveness
○ Performance

● Today:
○ Immutability
○ Thread confinement
○ Java primitives

■ For ensuring visibility, atomicity
■ Waiting
■ With some discussion of other languages

1717-214/514

Immutability
● A key concept in design, not just for concurrency

○ Inherently thread-safe
○ No risks in sharing
○ Can make things very simple

1817-214/514

Making a Class Immutable
public class Complex {

double re, im;

public Complex(double re, double im) {
this.re = re;
this.im = im;

}

public double getRealPart() { return re; }
public double getImaginaryPart() { return im; }

public double setRealPart(double re) { this.re = re; }
public double setImaginaryPart(double im) { this.im = im; }

…

1917-214/514

Making a Class Immutable
public final class Complex {

private final double re, im;

public Complex(double re, double im) {
this.re = re;
this.im = im;

}

// Getters without corresponding setters
public double getRealPart() { return re; }
public double getImaginaryPart() { return im; }

...

2017-214/514

Ensuring Immutability
● Don’t provide any mutators
● Ensure that no methods may be overridden
● Make all fields final
● Make all fields private
● Ensure security of any mutable components

2117-214/514

Immutability
What if you need to make a change?
public final class Complex {

private final double re, im;

public Complex(double re, double im) {
this.re = re;
this.im = im;

}

// Getters without corresponding setters
public double getRealPart() { return re; }
public double getImaginaryPart() { return im; }

public ??? add(Complex c) {
...

}

2217-214/514

Making a Class Immutable
public final class Complex {

private final double re, im;

public Complex(double re, double im) {
this.re = re;
this.im = im;

}

// Getters without corresponding setters
public double getRealPart() { return re; }
public double getImaginaryPart() { return im; }

// subtract, multiply, divide similar to add
public Complex add(Complex c) {

return new Complex(re + c.re, im + c.im);
}

2317-214/514

Immutability
We have seen this before! Is Game truly immutable?

2417-214/514

Immutability
What functionality was made really easy by this design?

2517-214/514

Immutable?
class Stack {

readonly #inner: any[]
constructor (inner: any[]) {

this.#inner=inner
}
push(o: any): Stack {

const newInner = this.#inner.slice()
newInner.push(o)
return new Stack(newInner)

}
peek(): any {

return this.#inner[this.#inner.length-1]
}
getInner(): any[] {

return this.#inner
}

}

2617-214/514

Immutable?
class Stack {

readonly #inner: any[]
constructor (inner: any[]) {

this.#inner=inner
}
push(o: any): Stack {

const newInner = this.#inner.slice()
newInner.push(o)
return new Stack(newInner)

}
peek(): any {

return this.#inner[this.#inner.length-1]
}
getInner(): any[] {

return this.#inner
}

}

Inner mutable state
(List in Java)

Create copy of
mutable object
(new ArrayList(old)
in Java)

Return new
immutable object

2717-214/514

Aliasing is what makes mutable state risky
Many variables may point to same object

Any reference to the object can modify the object, effect seen by all
other users

const x = [1, 2, 3]
const y = x
function foo(z: number[]): void { /*...*/ }
foo(y)x, y, and z all point to

the same mutable
array

2817-214/514

Immutable?
class Stack {

readonly #inner: any[]
constructor (inner: any[]) {

this.#inner=inner
}
push(o: any): Stack {

const newInner = this.#inner.slice()
newInner.push(o)
return new Stack(newInner)

}
peek(): any {

return this.#inner[this.#inner.length-1]
}
getInner(): any[] {

return this.#inner
}

}

Inner mutable state
(List in Java)

Create copy of
mutable object
(new ArrayList(old)
in Java)

Return new
immutable object
Leak mutable state
Accept mutable state

2917-214/514

Fixed
class Stack {

readonly #inner: any[]
constructor (inner: any[]) {

this.#inner=inner.slice()
}
push(o: any): Stack {

const newInner = this.#inner.slice()
newInner.push(o)
return new Stack(newInner)

}
peek(): any {

return this.#inner[this.#inner.length-1]
}
getInner(): any[] {

return this.#inner.slice()
// Java: return new ArrayList(inner)

}
}

3017-214/514

Ensuring Immutability
● Don’t provide any mutators
● Ensure that no methods may be overridden
● Make all fields final
● Make all fields private
● Ensure security of any mutable components

3117-214/514

Writing Immutable Data Structures
Any “set” operation returns a new copy of an object

(can point to old object to save memory, e.g. linked lists)
Final fields of immutable objects are safe (e.g., strings, numbers)
Fields of mutable objects must be protected

(encapsulation, making copies)
Careful with mutable constructor/method arguments (make copies)

Easy to make mistakes when mixing mutable and immutable data
structures, only academic tools for checking

3217-214/514

Trend toward immutable data structures
Immutable data structures common in functional programming

Many recent languages and libraries embrace immutability
Scala, Rust, stream, React, Java Records

Simplifies building concurrent and distributed systems

Requires some practice when used to imperative programming
with mutable state, but will become natural

3417-214/514

Design Discussion
Design for Understandability / Maintainability
● Immutable objects are easy to reason about, they won’t change
● Mutable objects have more complicated contracts, function and

client both can modify state
● Do not need to think about corner cases of concurrent

modification

Design for Reuse
● Easy to reuse even in concurrent settings

3517-214/514

Java 16 Records
Records are (shallowly) immutable

No setters

But also no defensive copying of mutable fields

3617-214/514

Immutability
Any disadvantages?

3717-214/514

Immutability
Any disadvantages?

String x = "It was the best of times, .."; // An entire book.

x += "The end.";

3817-214/514

Immutability
Any disadvantages?

String x = "It was the best of times, .."; // An entire book.

x += "The end.";

● For performance reasons, when needed:
○ Provide mutable helpers (e.g. StringBuilder).
○ Bundle common actions

3917-214/514

Designing for Immutability
In short: make things immutable unless you really can’t

● Especially smaller data-classes
● Not realistic for classes whose state naturally changes

○ BankAccount: return a new account for each transaction?
○ In that case, minimize mutable part, guard against sharing

4017-214/514

How to Prevent Competing Access?
● Anyone remember the simple solutions?

○ Don’t have state!
○ Don’t have shared state!
○ Don’t have shared mutable state!

4117-214

JAVA PRIMITIVES: ENSURING
VISIBILITY AND ATOMICITY

Continuing

4217-214

Non atomicity and thread (un)safety

@NotThreadSafe
public class UnsafeCountingFactorizer implements Servlet {

private long count = 0;

public long getCount() { return count; }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
++count;
encodeIntoResponse(resp, factors);

}
}

value->9 9+1->10 value-
>10

value->9 9+1->10 value-
>10

A
B

4317-214

Cooperative thread termination
How long would you expect this to run?

public class StopThread {
private static boolean stopRequested;

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {

while (!stopRequested)
/* Do something */ ;

});
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
stopRequested = true;

}
}

4417-214/514

What could have gone wrong?
● In the absence of synchronization, there is no guarantee as to when, if ever,

one thread will see changes made by another!
○ VMs can and do perform this optimization (“hoisting”):

while (!done)
/* do something */ ;

becomes:

if (!done)
while (true)

/* do something */ ;

4517-214

How do you fix it?
public class StopThread {

private static boolean stopRequested;

private static synchronized void requestStop() {
stopRequested = true;

}

private static synchronized boolean stopRequested() {
return stopRequested;

}

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {

while (!stopRequested())
/* Do something */ ;

});
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
requestStop();

}
}

4617-214

You can do better (?)
volatile is synchronization without mutual exclusion
public class StopThread {

private static volatile boolean stopRequested;

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {

while (!stopRequested)
/* Do something */ ;

});
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
stopRequested = true;

}
}

forces all accesses (read or write) to
the volatile variable to occur in main
memory, effectively keeping the
volatile variable out of CPU caches.

https://stackoverflow.com/questions/3519664/difference-between-volatile-and-synchronized-in-java

4717-214/514

Volatile Keyword
● Tells compiler and runtime that variable is shared and

operations on it should not be reordered with other memory ops
○ A read of a volatile variable always returns the most recent write by any

thread
● Volatile is not a substitute for synchronization

○ Volatile variables can only guarantee visibility
○ Locking can guarantee both visibility and atomicity

4817-214/514

Thread Confinement
● Ensure variables are not shared across threads (concurrency

version of encapsulation)
● Stack confinement:

○ Object only reachable through local variables (never leaves method)
→ accessible only by one thread

○ Primitive local variables always thread-local
● Confinement across methods/in classes needs to be done

carefully (see immutability)

4917-214/514

Approaches to Thread Confinement
● Local variables + defense copying works in most environments

○ Java also has ThreadLocal, to make values accessible to individual
threads only

● Other languages require different treatments:
○ JS obviously does not have this problem
○ Python has explicit separation between multi-threading and multi-

processing. The latter cannot share state except through special objects

5017-214

Example: Thread Confinement
public int loadTheArk(Collection<Animal> candidates) {

SortedSet<Animal> animals;
int numPairs = 0;
Animal candidate = null;
// animals confined to method, don't let them escape!
animals = new TreeSet<Animal>(new

SpeciesGenderComparator());
animals.addAll(candidates);
for (Animal a : animals) {

if (candidate == null || !candidate.isPotentialMate(a))
candidate = a;

else {
ark.load(new AnimalPair(candidate, a));
++numPairs;
candidate = null;

}
}
return numPairs;

}

● Shared ark object
● TreeSet is not thread

safe but it’s local →
can’t leak

● Defensive copying on
AnimalPair

5117-214

THREAD SAFETY:
DESIGN TRADEOFFS

5217-214/514

Immutability Simplifies Thread Confinement
● Immutable objects can be shared freely
● Remember:

○ Fields initialized in constructor
○ Fields final
○ Defensive copying if mutable objects used internally

5317-214/514

Synchronization Is More Powerful Still
● But requires explicit locking
● Thread-safe objects vs guarded:

○ Thread-safe objects perform synchronization internally (clients can
always call safely)

○ Guarded objects require clients to acquire lock for safe calls
● Thread-safe objects are easier to use (harder to misuse), but

guarded objects can be more flexible

5417-214/514

When Possible, Use The Core Library!
There are well-designed, often fast objects for almost any
application in most languages
@NotThreadSafe
public class CountingFactorizer implements Servlet {

private long count = 0;

public long getCount() { return count; }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
++count;
encodeIntoResponse(resp, factors);

}
}

5517-214/514

When Possible, Use The Core Library!
There are well-designed, often fast objects for almost any
application in most languages – e.g., AtomicLong
@ThreadSafe
public class CountingFactorizer implements Servlet {

private final AtomicLong count = new AtomicLong(0);

public long getCount() { return count.get(); }

public void service(ServletRequest req, ServletResponse resp) {
BigInteger i = extractFromRequest(req);
BigInteger[] factors = factor(i);
count.incrementAndGet();
encodeIntoResponse(resp, factors);

}
}

5617-214/514

Summary: Synchronization
● Ideally, avoid shared mutable state
● If you can’t avoid it, synchronize properly

○ Failure to do so causes safety and liveness failures
○ If you don’t sync properly, your program won’t work

● Even atomic operations require synchronization
○ e.g., stopRequested = true
○ And some things that look atomic aren’t (e.g., val++)

5717-214

JAVA PRIMITIVES:
WAIT, NOTIFY, AND TERMINATION

5817-214/514

● E.g., transfer money from bank account with insufficient funds?

Scenario: What to do on a method if the
precondition is not fulfilled?

5917-214/514

● E.g., transfer money from bank account with insufficient funds?
● Obvious in a synchronous world: throw exception

Scenario: What to do on a method if the
precondition is not fulfilled?

6017-214/514

● E.g., transfer money from bank account with insufficient funds?
● Not so obvious in a concurrent world.
● E.g., suppose a money transfer involves an

intermediate/temporary account. One actor sends money to
that account & the other pulls it from there. What should the
second do when they send a query and the account is empty?

Scenario: What to do on a method if the
precondition is not fulfilled?

6317-214

Option 1: Balking

• If there are multiple calls to the job method, only one will
proceed while the other calls will return with nothing.

public class BalkingExample {
private boolean jobInProgress = false;

public void job() {
synchronized (this) {

if (jobInProgress) { return; }
jobInProgress = true;

}
// Code to execute job goes here

}

void jobCompleted() {
synchronized (this) {

jobInProgress = false;
}

}
}

6517-214/514

Option 2: Guarded Suspension
● Block execution until a given condition is true
● For example,

○ Pull element from queue, but wait on an empty queue
○ Transfer money from bank account as soon sufficient funds are there

● Blocking as (sometimes simpler) alternative to callback

6617-214/514

Example: Guarded Suspension
● Loop until condition is satisfied

○ wasteful, since it executes continuously while waiting

public void guardedJoy() {
// Simple loop guard. Wastes
// processor time. Don't do this!
while (!joy) {
}
System.out.println("Joy has been achieved!");

}

6717-214/514

Monitor Mechanisms in Java
● Object.wait() – suspends the current thread’s execution,

releasing locks
● Object.wait(timeout) – suspends the current thread’s execution

for up to timeout milliseconds
● Object.notify() – resumes one of the waiting threads
● See documentation for exact semantics

6817-214/514

Example: Guarded Suspension
● More efficient: invoke Object.wait to suspend current thread

● When wait is invoked, the thread releases the lock and suspends execution.
The invocation of wait does not return until another thread has issued a
notification

public synchronized guardedJoy() {
while (!joy) {

try {
wait();

} catch (InterruptedException e) {}
}
System.out.println("Joy and efficiency have been achieved!");

}

public synchronized notifyJoy() {
joy = true;
notifyAll();

}

6917-214/514

Never Invoke Wait Outside a Loop!
● Loop tests condition before and after waiting
● Test before skips wait if condition already holds

○ Necessary to ensure liveness
○ Without it, thread can wait forever!

● Testing after wait ensures safety
○ Condition may not be true when thread wakens
○ If thread proceeds with action, it can destroy invariants!

7017-214/514

All Your Waits Should Look Like This
synchronized (obj) {

while (<condition does not hold>) {
obj.wait();

}

... // Perform action appropriate to condition
}

7217-214/514

Guarded Suspension vs Balking Design Decisions
● Guarded suspension:

○ Typically only when you know that a method call will be suspended for a
finite and reasonable period of time

○ If suspended for too long, the overall program will slow down
● Balking:

○ Typically only when you know that the method call suspension will be
indefinite or for an unacceptably long period

7317-214

Monitor Example
class SimpleBoundedCounter {

protected long count = MIN;
public synchronized long count() { return count; }
public synchronized void inc() throws InterruptedException {

awaitUnderMax(); setCount(count + 1);
}
public synchronized void dec() throws InterruptedException {

awaitOverMin(); setCount(count - 1);
}
protected void setCount(long newValue) { // PRE: lock held

count = newValue;
notifyAll(); // wake up any thread depending on new value

}
protected void awaitUnderMax() throws InterruptedException {

while (count == MAX) wait();
}
protected void awaitOverMin() throws InterruptedException {

while (count == MIN) wait();
}

}

7417-214

Interruption

• Difficult to kill threads once started, but may politely ask to stop
(thread.interrupt())

• Long-running threads should regularly check whether they have been
interrupted

• Threads waiting with wait() throw exceptions if interrupted
• Read documentation

public class Thread {
public void interrupt() { ... }
public boolean isInterrupted() { ... }
...

}

7517-214

Interruption Example

For details, see Java Concurrency In Practice, Chapter 7

class PrimeProducer extends Thread {
private final BlockingQueue<BigInteger> queue;
PrimeProducer(BlockingQueue<BigInteger> queue) {

this.queue = queue;
}
public void run() {

try {
BigInteger p = BigInteger.ONE;
while (!Thread.currentThread().isInterrupted())

queue.put(p = p.nextProbablePrime());
} catch (InterruptedException consumed) {

/* Allow thread to exit */
}

}
public void cancel() { interrupt(); }

}

7617-214/514

Does Threading Only Complicate Things?
● Not at all!

○ Obviously useful for parallelism and asynchronous I/O
○ But we can also use it for good design.

● Threads map to tasks
○ Commonly assign one thread per task
○ Convenient abstraction for handling large workloads

● Help manage complex event loops
○ Message passed from one handle to another in single-threaded envs.

7717-214/514

Forming Design Patterns
● We’ve seen:

Concurrency strategies:
○ Function-based dispatch (callbacks)
○ Using queues to manage asynchronous events

Thread-safety strategies:
○ Immutability where possible
○ Synchronization on mutable state

7817-214/514

Tradeoffs & Summary
● Strategies:

○ Don't share a state variable across threads;
○ Make the state variable immutable; or
○ Use synchronization whenever accessing the state variable.

■ Thread-safe vs guarded
■ Coarse-grained vs fine-grained synchronization

● When to choose which strategy?
○ Avoid synchronization if possible
○ Choose simplicity over performance where possible

