
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Distributed Systems – Events
Everywhere!

Bogdan Vasilescu Jonathan Aldrich

217-214/514

Administrative
● No quiz today

○ But we will practice some exam-style coding questions

317-214/514

Outline
● Recapping Concurrency
● Distributed Systems

○ Revisiting Event-Based Programming
● Reactive Programming

○ If time permits

417-214/514

Recapping Concurrency

517-214/514

We Started With a Challenge
When systems get decentralized, and have multiple users, we can’t
just use method-call based control flow anymore

blockingexecution

617-214/514

Instead, We Use Event-Based Programming

717-214/514

We Separated Out the GUI from the Game
And realized that we needed to decouple them to keep the design
clean and extensible. Hence the observer pattern

817-214/514

Web-Apps Decouple the Client & Server

917-214/514

First Architectural Pattern: Model-View-Controller
Provides a high-level strategy for designing large,
front-end/back-end systems

https://overiq.com/django-1-10/mvc-pattern-and-django/

Game
(God
Cards)

Board,
Tower,
Player

HTML
Template
Engine

1017-214/514

We Studied An Example Setup in Recitation

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

JSON

NanoHTTPd

/newgame

ReactJS (+ HandleBars)

And realized that we have to start thinking about concurrency, to
handle asynchronous communication

1117-214/514

Engine plus:

● Web APIs — provided by
browsers, like the DOM,
AJAX, setTimeout and more.

● Event loop

● Callback queue

We Talked About a Relatively Simple Case:
The JavaScript Runtime

1217-214/514

With A Special Discussion on Callbacks
By far the most common way to
express and manage asynchronicity
in JavaScript programs.

function task(message) {
// emulate time consuming task
let n = 10000000000;
while (n > 0){

n--;
}
console.log(message);

}

console.log('Start script...');
setTimeout(() => {

task('Download a file.');
}, 1000);
console.log('Done!');

1317-214/514

Remember “Callback Hell”
(and how we solved it)?
const makeBurger = nextStep => {
getBeef(function (beef) {
cookBeef(beef, function (cookedBeef) {
getBuns(function (buns) {

putBeefBetweenBuns(buns, beef,
function(burger) {

nextStep(burger)
})

})
})

})
}

// Make and serve the burger
makeBurger(function (burger) => {
serve(burger)

})

let bunPromise = getBuns();
let cookedBeefPromise = getBeef()

.then(beef => cookBeef(beef));
// Resolve both promises in parallel
Promise.all([bunPromise, cookedBeefPromise])

.then(([buns, beef]) =>
putBeefBetweenBuns(buns, beef))

.then(burger => serve(burger))

1417-214/514

Then We Went Deep Into Concurrency
Focusing mostly on Java

public interface Runnable { // java.lang.Runnable
public void run();

}

public static void main(String[] args) {
int n = Integer.parseInt(args[0]); // Number of threads;

Runnable greeter = () -> System.out.println("Hi!");
for (int i = 0; i < n; i++) {

new Thread(greeter).start();
}

}

1517-214/514

Then We Went Deep Into Concurrency
We covered:

● Hazards: Safety, liveness, performance
● Atomicity, and language features that offer it
● Thread confinement & Immutability

○ Rules for ensuring these properties; design benefits
● Synchronization

○ How to enable it, and the risk of deadlocks
● Keywords and primitives

○ volatile for visibility, wait, notify for guarded suspension

1617-214/514

Where Does That Get Us?

Design for

understanding

change/ext.

reuse

robustness

...

1717-214/514

Where Does That Get Us?

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Unit Testing ✓

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

1817-214/514

Where Does That Get Us?

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Unit Testing ✓

Domain Analysis ✓
Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

1917-214/514

Where Does That Get Us?

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Unit Testing ✓

Domain Analysis ✓
Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓
Frameworks and
Libraries, APIs

Module systems,
microservices

(Testing for)
Robustness

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

2017-214/514

Where Does That Get Us?

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Unit Testing ✓

Domain Analysis ✓
Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓
Frameworks and
Libraries, APIs

Module systems,
microservices
(Testing for)
Robustness

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

2117-214/514

Modern software is dominated by systems
composed of [components, APIs, modules],
developed by completely different people,

communicating over a network!

2217-214/514

For example

● 3rd party Facebook apps
● Android user interface
● Backend uses Facebook data

2317-214/514

Database Server

Credit card server

Android Phone

2417-214/514

What is a distributed system?
● Multiple system components (computers) communicating via

some medium (the network) to achieve some goal
● “Concurrent” (shared-memory multiprocessing) vs. Distributed

○ Agents: Threads vs. Processes
■ Processes typically spread across multiple computers
■ Can put them on one computer for testing

○ Communication: changes to Shared Objects vs. Network Messages

2517-214/514

Distributed systems

● A collection of autonomous systems working
together to form a single system
○ Enable scalability, availability, resiliency, performance,

etc …
● Remote procedure calls instead of function calls

○ Typically REST API to URL

● Benefits? Drawbacks?

2617-214/514

Distributed System Benefits
Scalability

Very strong encapsulation (only APIs public)

Computation beyond local resources

Independent deployment, operations, and evolution

Also multiple containers on single system

Pay per transaction / storage / use

2717-214/514

Drawbacks?
“A distributed system is one in which the failure of a computer you
didn't even know existed can render your own computer unusable.”

-- Leslie Lamport

2817-214/514

2917-214/514 source: http://martinfowler.com/articles/microservices.html

3017-214/514 http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

3117-214/514 http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

3217-214/514

3317-214/514

Microservices
Building applications as suite of small and easy to replace services

● fine grained, one functionality per service
● (sometimes 3-5 classes)
● composable
● easy to develop, test, and understand
● fast (re)start, fault isolation

Modelled around business domain

Interplay of different systems and languages, no commitment to technology stack

Easily deployable and replicable

Embrace automation, embrace faults

Highly observable

3417-214/514

Technical Considerations
REST APIs

Independent development and deployment

Self-contained services (e.g., each with own database)

● multiple instances behind load-balancer

Streamline deployment

3517-214/514 source: http://martinfowler.com/articles/microservices.html

3617-214/514

Overhead

3717-214/514

Software Architecture vs Design Patterns
Design patterns: Composition and interaction of objects

Architectural pattern: System-level structures, subsystems

Architecture often has focus on system qualities as performance,
scalability, robustness, security

Typical architectural patterns/styles: client server, microservice,
event-based, pipe and filter

3817-214/514

This introduces new challenges when designing
for robustness.
● Key ideas:

○ Provide explicit control-flow for normal and abnormal execution
■ Error handling and recovery for the latter

○ Test normal and abnormal execution
● Until now, most of the program was under our control

○ What if something goes wrong and it’s not our fault? How can we make
a robust system in light of this?

○ How can we test considering all the different components and
dependencies?

○ What if the system is too big to test?

3917-214/514

This introduces new challenges when designing
for robustness.
● Key ideas:

○ Provide explicit control-flow for normal and abnormal execution
■ Error handling and recovery for the latter

○ Test normal and abnormal execution
● Until now, most of the program was under our control

○ What if something goes wrong and it’s not our fault? How can we
make a robust system in light of this?

○ How can we test considering all the different components and
dependencies?

○ What if the system is too big to test?

4017-214/514

What will you do if
● An API your data plugin uses is temporarily down?

○ Or returns a surprising error code

https://blog.cloudflare.com/october-2021-facebook-outage/

https://blog.cloudflare.com/october-2021-facebook-outage/

4117-214/514

Retry!
● Maybe wait a bit.

○ How Long? How often?

4217-214/514

Retry!
● Exponential Backoff

○ Retry, but wait exponentially longer each time
○ Assumes that failures are exponentially distributed

■ E.g., a 10h outage is extremely rare, a 10s one not so crazy
○ E.g.:

const delay = retryCount => new Promise(resolve =>
setTimeout(resolve, 10 ** retryCount));

const getResource = async (retryCount = 0, lastError = null) => {
if (retryCount > 5) throw new Error(lastError);
try {
return apiCall();

} catch (e) {
await delay(retryCount);
return getResource(retryCount + 1, e);

}
};

https://www.bayanbennett.com/posts/retrying-and-exponential-backoff-with-promises/

4317-214/514

Retry!
● Still need an exit-strategy

○ Learn HTTP response codes
■ Don’t bother retrying on a 403 (go find out why)

○ Use the API response, if any
■ Errors are often documented -- e.g., GitHub will send a “rate limit exceeded” message

const delay = retryCount => new Promise(resolve =>
setTimeout(resolve, 10 ** retryCount));

const getResource = async (retryCount = 0, lastError = null) => {
if (retryCount > 5) throw new Error(lastError);
try {
return apiCall();

} catch (e) {
await delay(retryCount);
return getResource(retryCount + 1, e);

}
};

https://www.bayanbennett.com/posts/retrying-and-exponential-backoff-with-promises/

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

4417-214/514

What will you do if
● An API your data plugin uses is temporarily down?

○ Or returns a surprising error code
● Consider: retry

○ Have a plan
○ Have a back-up plan

What if Facebook withdraws its DNS

routing information?

https://blog.cloudflare.com/october-2021-facebook-outage/

https://blog.cloudflare.com/october-2021-facebook-outage/

4517-214/514

Handling Recovery

● We need a fallback plan
○ Can’t just e.printStackTrace()
○ What can we do?

4617-214/514

Proxy Design Pattern
● Local representative for remote object

○ Create expensive obj on-demand
○ Control access to an object

● Hides extra “work” from client
○ Add extra error handling, caching
○ Uses indirection

https://refactoring.guru/design-patterns/proxy

4717-214/514

Example: Caching
interface FacebookAPI {

List<Node> getFriends(String name);
}
class FacebookProxy implements FacebookAPI {

FacebookAPI api;
HashMap<String,List<Node>> cache = new HashMap…
FacebookProxy(FacebookAPI api) { this.api=api;}

List<Node> getFriends(String name) {
result = cache.get(name);
if (result == null) {

result = api.getFriends(name);
cache.put(name, result);

}
return result;

}
}

4817-214/514

Example: Caching and Failover
interface FacebookAPI {

List<Node> getFriends(String name);
}
class FacebookProxy implements FacebookAPI {

FacebookAPI api;
HashMap<String,List<Node>> cache = new HashMap…
FacebookProxy(FacebookAPI api) { this.api=api;}

List<Node> getFriends(String name) {
try {

result = api.getFriends(name);
cache.put(name, result);
return result;

} catch (ConnectionException c) {
return cache.get(name);

}
}

4917-214/514

Example: Redirect to Local Service
interface FacebookAPI {

List<Node> getFriends(String name);
}
class FacebookProxy implements FacebookAPI {

FacebookAPI api;
FacebookAPI fallbackApi;
FacebookProxy(FacebookAPI api, FacebookAPI f) {

this.api=api; fallbackApi = f; }

List<Node> getFriends(String name) {
try {

return api.getFriends(name);
} catch (ConnectionException c) {

return fallbackApi.getFriends(name);
}

}

5017-214/514

Principle: Delegating Recovery

● We need a fallback plan
○ Can’t just e.printStackTrace()
○ What can we do?

● In case of failure, redirect
○ If at all plausible, hand work over to proxy

■ Local data(set), fallback service
○ If not, recruit clean-up service

■ Proces, display errors

5117-214/514

What will you do if
● An API your data plugin uses is temporarily down?

○ Or returns a surprising error code
● Consider caching

○ E.g., store last Twitter feed, Target shopping card offline
○ Not cheap, select caching mechanism carefully
○ If user-facing: be transparent about offline status

5217-214/514

Principle: Modular Protection
● Online: use HTTP response status codes effectively

○ Don’t just hand out 404, 500
■ Unless they really apply

○ Provide and document fall-back options, information
■ Good RESTful design helps

5317-214/514

Principle: Delegating Recovery

(Again?)

● Don’t make a failing node/module serve a client
○ It needs to clean itself up
○ Forward clients to designated recovery service

■ A bit like the proxy pattern
○ Consider asynchrony

■ Failure is often expensive

5417-214/514

Principle: Consider Idempotence

● Idempotency: the same call from the same context should have
the same result
○ Hitting “Pay” twice should not cost you double!
○ A resource should not suddenly switch from JSON to XML
○ Makes APIs predictable, resilient

5517-214/514

Ensuring Idempotence

● Fairly easy for read-only requests
○ Ensure consistency of read-only data
○ Never attach side-effects to GET requests*

● Also for updates, deletes
○ Not “safe”, because data is mutated
○ Natural idempotency because the target is identified

● How about writing/sending new data?

*https://twitter.com/rombulow/status/990684463007907840

https://twitter.com/rombulow/status/990684463007907840

5617-214/514

Ensuring Idempotence
● How about writing/sending new data?

○ Could fail anywhere
■ Including in displaying success message after payment!

○ POST is not idempotent
○ Use Unique Identifiers
○ Server keeps track of

requests already handled

https://stripe.com/blog/idempotency

https://stripe.com/blog/idempotency

5717-214/514

Testing Distributed Systems
● Challenges:

○ Volatility
■ Users are hard to simulate
■ Real-world effects -- things crashing, delays, indicative use/data.

○ Performance
■ Massive databases? Systems with minutes-long start-up times?
■ Very common in ML

● We will return to this later!
○ We’ll return to Quality Assurance in “big” (and distributed) systems in the

near future.
○ Key principle: isolation – don’t test the entire real system!

5817-214/514

Distributed Systems
There are entire courses on getting these right; not a goal here
But do:

● Understand challenges and solutions to achieving robustness
○ Primarily as a client of a distributed system (we all are these days)
○ We will get back to testing as a designer
○ Provide error handling through isolation

● Learn to communicate with, and provide your own, nodes
○ API design
○ Microservices

5917-214/514

Reactive Programming

6017-214/514

Reactive Programming
Programming strategy or patterns, where programs react to data

Embraces concurrency, focuses on data flows

Takes event-based programming to an extreme

Decouples programs around data

6117-214/514

Useful analogy: Spreadsheets
Cells contain data or
formulas

Formula cells are computed
automatically whenever
input data changes

6217-214/514

Implementing Spreadsheet-Like
Computations?

6317-214/514

Implementing Spreadsheet-Like
Computations?

x = 3

y = 5

z = x + y

print(z) // prints 8

x = 5

print(z) // expect 10, prints 8

in imperative computations,
no update when inputs change

6417-214/514

Implementing Spreadsheet-Like
Computations?

x = 3

y = 5

z = () => x + y

print(z()) // prints 8

x = 5

print(z()) // prints 10

Does not easily work in Java, since Java requires variables in closure to be final. Need object with mutable
internal state

computation performed on demand (pull)
caching possible

6517-214/514

Implementing Spreadsheet-Like
Computations?

x = new Cell(3)

y = new Cell(5)

z = new DerivedCell(x, y, (a,b)=>a+b)

print(z.get()) // prints 8

x.set(5)

print(z.get()) // prints 10

Cell implements observer pattern,
informs observers of changes (push)

DerivedCell listens to changes from Cell,
updates internal state on changes,
informs own observers of changes

6617-214/514

Complications
Single change in cell can trigger many computations (push)

Possibly put in queue, compute asynchronously

Perform some computations lazily when needed

Cyclic dependencies can result in infinite loops
Detect, special ways to handle

Observers can hinder garbage collection

6717-214/514

Reactive Programming and GUIs
Store state in observable cells, possibly derived

Have GUI update automatically on state changes

Have buttons perform state changes on cells

Mirrors active model-view-controller
pattern (model is observable cell)

6817-214/514

From Pull to Push
Instead of expecting clients to look for state (pull)

observers react to state changes with actions (push)

Commonly, observables indicate that something has changed,
triggering observers to get updated state (push-pull)

6917-214/514

Beyond Spreadsheet Cells

https://rxjs.dev/guide/observable

7017-214/514

Reactive Programming Libraries
RxJava, RxJS, many others

Provide Stream-like interfaces for event handling, with many
convenience functions (similar to promises)

Observables typically allow pushing multiple values in sequence

Cells can be implemented by considering only the latest value of
observables

7117-214/514

Previous Example with RxJava

PublishSubject<Integer> x = PublishSubject.create();
PublishSubject<Integer> y = PublishSubject.create();
Observable<Integer> z = Observable.combineLatest(x, y,
(a,b)->a+b);
z.subscribe(System.out::println);
x.onNext(3);
y.onNext(5);
x.onNext(5);

7217-214/514

Chaining Computations along Data

awk '{print $7}' < /var/log/nginx/access.log |
sort |
uniq -c |
sort -r -n |

head -n 5 > out

Multiple programs executed in sequence each read lines and produce lines;
can start reading lines before previous program is finished

7317-214/514

Streams / Reactive Programming / Events
Instead of calling methods in sequence,
set up pipelines for data processing

Let data control the execution
var lines = IOHelper.readLinesFromFile(file);
var linesObs = Observable.fromIterable(lines);
linesObs.

map(Parser::getURLColumn).
groupBy(...).
sorted(comparator).
subscribe(IOHelper.writeToFile(outFile));

7417-214/514

Aside: The Adapter Pattern

7517-214/514

The Adapter Design Pattern

https://refactoring.guru/design-patterns/adapter

7617-214/514

https://refactoring.guru/design-patterns/adapter

7717-214/514

The Adapter
Design Pattern

Applicability
● You want to use an existing class,

and its interface does not match the
one you need

● You want to create a reusable class
that cooperates with unrelated
classes that don’t necessarily have
compatible interfaces

● You need to use several
subclasses, but it’s impractical to
adapt their interface by subclassing
each one

Consequences
• Exposes the functionality of an object in

another form
• Unifies the interfaces of multiple

incompatible adaptee objects
• Lets a single adapter work with multiple

adaptees in a hierarchy
• -> Low coupling, high cohesion

7817-214/514

Adapters for Collections/Streams/Observables

Any others?

var lines = IOHelper.readLinesFromFile(file);
var linesObs = Observable.fromIterable(lines);
linesObs.

map(Parser::getURLColumn).
groupBy(...).
sorted(comparator).
subscribe(IOHelper.writeToFile(outFile));

7917-214/514

Façade/Controller vs. Adapter
● Motivation

○ Façade: simplify the interface
○ Adapter: match an existing interface

● Adapter: interface is given
○ Not typically true in Façade

● Adapter: polymorphic
○ Dispatch dynamically to multiple implementations
○ Façade: typically choose the implementation statically

8017-214/514

Summary
● Most modern systems are distributed

○ Goes beyond basic concurrency; processes vs. threads
○ Start thinking about microservices
○ We began discussing robustness

● Recapped decoupling GUI, promises
● Reactive programming decouples programs along data

○ Observer pattern on steroids
○ New Design Pattern: Adapter

