
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Organizing Systems at Scale:
Modules, Dependencies, Breaking
Changes

Jonathan Aldrich Bogdan Vasilescu

217-214/514

Quiz: API Design lecture
On Canvas, Lecture 18

317-214/514

Administrative
Exam Thursday.

HW6 release.

Email BV+JA+MD, please!

417-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices

Testing for
Robustness

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

517-214/514

REST APIs
(REpresentational State Transfer)

617-214/514

REST (or RESTful) API

API of a web service “that conforms to the constraints of the
REST architectural style.”
Uniform interface over HTTP requests

Send parameters to URL, server responds with the
representation of a resource (JSON, XML common)

Stateless: Each request is self-contained
Language independent, distributed

717-214/514

REST API Design
All the same design principles apply

Document the API, input/output formats and error
conditions!

817-214/514

CRUD Operations
const express = require('express');
const bodyParser = require('body-parser');
const app = express();
app.use(bodyParser.json()); // JSON input
app.get('/articles', (req, res) => {
 const articles = [];
 // code to retrieve an article...
 res.json(articles);
});
app.post('/articles', (req, res) => {
 // code to add a new article...
 res.json(req.body);
});
app.put('/articles/:id', (req, res) => {
 const { id } = req.params;
 // code to update an article...
 res.json(req.body);
});
app.delete('/articles/:id', (req, res) => {
 const { id } = req.params;
 // code to delete an article...
 res.json({ deleted: id });
});
app.listen(3000, () => console.log('server started'));

Path correspond to nouns, not
verbs, nesting common:

○ /articles, /state, /game
/articles/:id/comments

GET (receive), POST (submit new),
PUT (update), and DELETE
requests sent to those paths

Parameters for filtering, searching,
sorting, e.g., /articles?sort=date

917-214/514

REST Specifics
● JSON common for data exchange: Define and validate

schema -- many libraries help
● Return HTTP standard errors (400, 401, 403, 500, …)
● Security mechanism through SSL/TLS and other

common practices
● Caching common
● Consider versioning APIs /v1/articles, /v2/articles

1017-214/514

Module Systems

1117-214/514

Traditional Library Reuse
Static/dynamic linking against binaries (e.g., .DLLs)

Copy library code into repository

Limitations?

1217-214/514

Package Managers
Refer to library releases by name + version
Immutable storage in repository
Dependency specification in repository
Package manager downloads / updates dependencies

Maven, npm, pip, cargo, nuget, …
Release libraries to package repository

1317-214/514

To allow all of the previous things, we need
Module Systems

Foundation for distributing and reusing libraries

Packaging code (binary / source)

Linking against code in a module without knowing
internals

1417-214/514

Traditional Approach in Java: Packages and Jar Files

Packages structure name space, avoid naming collisions (edu.cmu.cs17214…)

Public classes are globally visible

● package visibility to hide within package
● no way to express visibility to select packages

.jar files bundle code (zip format internally)

● Java can load classes from all .jar files in classpath
● Java does not care where a class comes from, loads first that matches name

Classpath established at JVM launch

1517-214/514

Packages enough?
edu.cmu.cs214.santorini

edu.cmu.cs214.santorini.gui

edu.cmu.cs214.santorini.godcards

edu.cmu.cs214.santorini.godcards.impl

edu.cmu.cs214.santorini.logic

edu.cmu.cs214.santorini.utils

1617-214/514

Toward Module Systems
Stronger encapsulation sometimes desired

Expose only select public packages (and all public classes therein) to other
modules

Dynamic adding and removal of modules desired

OSGi (most prominently used by Eclipse)

● Bundle Java code with Manifest
● Framework handles loading with

multiple classloaders

Bundle-Name: Hello World
Bundle-SymbolicName: org.wikipedia.helloworld
Bundle-Description: A Hello World bundle
Bundle-ManifestVersion: 2
Bundle-Version: 1.0.0
Bundle-Activator: org.wikipedia.Activator
Export-Package:
org.wikipedia.helloworld;version="1.0.0"
Import-Package:
org.osgi.framework;version="1.3.0"

1717-214/514

Java Platform Module System
Since Java 9 (2017); built-in alternative
to OSGi

Modularized JDK libraries itself

Several technical differences to OSGi
(e.g., visibility vs access protection,
handling of diamond problem)

module A {
exports org.example.foo;
exports org.example.bar;

}
module B {

require A;
}

1817-214/514

Toward JavaScript Modules
Traditionally no module concept, import into flat namespace –
no way to avoid conflicts if two modules had a variable with
the same name

Creating own namespaces with closures/module pattern
<html>
<header>
<script type="text/javascript" src="lib1.js"></script>

<script type="text/javascript">
 var x = 1;
</script>

<script type="text/javascript" src="lib2.js"></script>

...

1917-214/514

The Module Pattern
var myRevealingModule = (function () {
 var privateVar = "Ben Cherry",
 publicVar = "Hey there!";

 function privateFunction() {
 console.log("Name:" + privateVar);
 }

 function publicSetName(strName) {
 privateVar = strName;
 }

 function publicGetName() {
 privateFunction();
 }

 // Reveal public pointers to
 // private functions and properties
 return {
 setName: publicSetName,
 greeting: publicVar,
 getName: publicGetName
 };
})();

myRevealingModule.setName("Paul Kinlan");

2017-214/514

The Module Pattern

<html>
<header>
<script type="text/javascript" src="lib1.js"></script>

<script type="text/javascript">

 const m1 = (function () {
const export = {}
const x = 1;
export.x = x;
return export;

 }());
</script>

<script type="text/javascript" src="lib2.js"></script>

...

2117-214/514

Node.js Modules (CommonJS)
Function require() to load other module, dynamic
lookup in search path

Module: JavaScript file, can write to export object

var http = require('http');

exports.loadData = function () {
 return http....
};

var surprise = require(userInput);

2217-214/514

Node uses Module Pattern Internally

function loadModule(filename, module, require) {
 var wrappedSrc =
 '(function(module, exports, require) {' +
 fs.readFileSync(filename, 'utf8') +
 '})(module, module.exports, require);';
 eval(wrappedSrc);
}

2317-214/514

ES2015 Modules (Similar to TypeScript)
Syntax extension for modules (instead of module pattern)

Explicit imports / exports

Static import names
(like Java), supports
better reasoning by tools

import { Location } from './location'

import { Game } from './game'

import { Board } from './board'

// module code

export { Worker, newWorker }

2417-214/514

JavaScript Modules and Packages

Modules always decide what to export (values, functions,
classes, …) -- everything else only visible in module.

Directory structure only used for address in import.

Packages typically have one or more modules and a name
and version.

2517-214/514

Dependency graphs and dependency
problems

2617-214/514

Dependency Graphs

Acyclic

Versioned dependency edges

2717-214/514

Dependency Graphs

Acyclic

Versioned dependency edges

D

DB

C

v1.4.1

v2.7.3

v2.7.5

2817-214/514

Dependency Graphs

Consider three libraries: A, B, and D, each at
version 1.
A:1 depends on B:1 which depends on D:1.
In the beginning, everyone is happy.

Example from https://jlbp.dev/what-is-a-diamond-dependency-conflict

https://jlbp.dev/what-is-a-diamond-dependency-conflict

2917-214/514

Dependency Graphs

Now D introduces version 2, which adds
some features but also removes some
features. No problems yet.

Example from https://jlbp.dev/what-is-a-diamond-dependency-conflict

https://jlbp.dev/what-is-a-diamond-dependency-conflict

3017-214/514

C comes along and decides to depend on
version 2 of D because it’s the latest and
greatest. Everything is still ok at this point.

Dependency Graphs

Example from https://jlbp.dev/what-is-a-diamond-dependency-conflict

https://jlbp.dev/what-is-a-diamond-dependency-conflict

3117-214/514

Now A wants to add a dependency on C.
This creates a diamond dependency conflict.
B:1 can only work with D:1, while C:1 can
only work with D:2, so no matter which
version of D you choose, the program will
blow up.

The Diamond Problem

Example from https://jlbp.dev/what-is-a-diamond-dependency-conflict

https://jlbp.dev/what-is-a-diamond-dependency-conflict

3217-214/514

If we choose D:2, then B blows up.

The Diamond Problem

Example from https://jlbp.dev/what-is-a-diamond-dependency-conflict

https://jlbp.dev/what-is-a-diamond-dependency-conflict

3317-214/514

If we choose D:1, then C blows up.

The Diamond Problem

Example from https://jlbp.dev/what-is-a-diamond-dependency-conflict

https://jlbp.dev/what-is-a-diamond-dependency-conflict

3417-214/514

Diamond dependency conflicts are
particularly difficult to solve because the
changes required to solve them can’t be
made by either the root of the dependency
tree (here, A) or the common library in conflict
(here, D); the updates need to be made in
one or more intervening libraries (here, B).
At the same time, the library that needs
updates (library B) has no incentive to make
the change.

The Diamond Problem

Example from https://jlbp.dev/what-is-a-diamond-dependency-conflict

https://jlbp.dev/what-is-a-diamond-dependency-conflict

3517-214/514

In order to move the ecosystem forward, B
needs to create a new version 2, which is
compatible with D:2. Then, A can form a
successful diamond.

The Diamond Problem

Example from https://jlbp.dev/what-is-a-diamond-dependency-conflict

https://jlbp.dev/what-is-a-diamond-dependency-conflict

3617-214/514

The Diamond Problem

What now?

D
A

B

C

v1.4.1

v0.1.2v2.7.3

v2.7.5

3717-214/514

Summary: Modules
Encapsulation at Scale

Decide which of many classes or packages to expose

Building a dependency graph between modules

3817-214/514

Breaking Changes

3917-214/514

Backward Compatible Changes
Can add new interfaces, classes

Can add methods to APIs,
but cannot change interface implemented by clients

Can loosen precondition and tighten postcondition,
but no other contract changes

Cannot remove classes, interfaces, methods

Clients may rely on undocumented behavior and
even bugs

4017-214/514

Breaking Changes
Not backward compatible (e.g., renaming/removing method)
Clients may need to change their implementation when they
update

or even migrate to other library
May cause costs for rework and interruption, may ripple
through ecosystem

4117-214/514

Software Ecosystem

4217-214/514

Breaking Changes

4317-214/514

Breaking Changes

4417-214/514

Breaking Changes

4517-214/514

Breaking changes can be hard to avoid
Need better planning? (Parnas’ argument)
Requirements and context change
Bugs and security vulnerabilities
Inefficiencies
Rippling effects from upstream changes
Technical debt, style

4617-214/514

Breaking changes cause costs
But cost can be paid by different participants and can be
delayed

4717-214/514

Upstream

Downstream

By default, rework and interruption
costs for downstream users

4817-214/514

How to reduce costs for downstream users?

4917-214/514

Downstream

Upstream

Not making a change
(opportunity costs, technical debt)

5017-214/514

Upstream
Downstream

Announcements
Documentation
Migration guide

5117-214/514

Parallel maintenance releases
Maintaining old interfaces (deprecation)
Release planning

Upstream Downstream

5217-214/514

Upstream Downstream

Extra Work

Avoiding dependencies
Encapsulating from change

5317-214/514

Upstream
Downstream

Influence development

5417-214/514

Semantic Versioning
Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,
2. MINOR version when you add functionality in a backwards

compatible manner, and
3. PATCH version when you make backwards compatible bug

fixes.

5517-214/514

Code status Stage Rule Example
version

First release New
product

Start with 1.0.0 1.0.0

Backward compatible
bug fixes

Patch
release

Increment the third digit 1.0.1

Backward compatible
new features

Minor
release

Increment the middle digit
and reset last digit to zero

1.1.0

Changes that break
backward compatibility

Major
release

Increment the first digit and
reset middle and last digits
to zero

2.0.0

https://docs.npmjs.com/about-semantic-versioning

https://docs.npmjs.com/about-semantic-versioning

5617-214/514

Cost distributions and practices are
community dependent

5717-214/514
57

5817-214/514

Backward compatibility to
reduce costs for clients
“API Prime Directive: When
evolving the Component API
from to release to release, do
not break existing Clients”
https://wiki.eclipse.org/Evolving_Java-based_APIs

Values
58

https://wiki.eclipse.org/Evolving_Java-based_APIs

5917-214/514

Downstream

Upstream

Yearly synchronized
coordinated releases

Backward
compatibility
for clients

6017-214/514

Willing to accept high costs +
opportunity costs
Educational material, workarounds
API tools for checking
Coordinated release planning
No parallel releases

Upstream

Backward
compatibility
for clients

60

6117-214/514

Convenient to use as resource
Yearly updates sufficient for many
Stability for corporate users

Downstream

Backward
compatibility
for clients

61

6217-214/514

Perceived stagnant development
and political decision making
Stale platform; discouraging
contributors
Coordinated releases as pain points
SemVer prescribed but not followed

Friction

Backward
compatibility
for clients

62

6317-214/514

Typically, if you have hip things, then
you get also people who create new
APIs on top ... to create the next
graphical editing framework or to
build more efficient text editors. ...
And these things don’t happen on the
Eclipse platform anymore.”

“

63

6417-214/514
64

6517-214/514

Ease for end users to install
and update packages
“CRAN primarily has the
academic users in mind, who
want timely access to current
research” [R10]

Values
65

6617-214/514

Continuous synchronization,
~1 month lag

Timely access to
current research
for end users

Upstream
Downstream

Volunteers

66

6717-214/514

Snapshot consistency within the
ecosystem (not outside)
Reach out to affected downstream
developers: resolve before release
Gatekeeping: reviews and
automated checking against
downstream tests

Upstream

Timely access to
current research
for end users

67

6817-214/514

Waiting for emails, reactive monitoring
Urgency when upstream package
updates
Dependency = collaboration
Aggressive reduction of dependencies,
code cloning

Downstream

Timely access to
current research
for end users

68

6917-214/514

Urgency and reacting to updates as
burden vs. welcoming collaboration
Gatekeeping works because of
prestige of being in repository
Updates can threaten scientific
reproducibility

Friction

Timely access to
current research
for end users

69

7017-214/514

And then I need to [react to] some
change ... and it might be a relatively
short timeline of two weeks or a
month. And that's difficult for me to
deal with, because I try to sort of
focus one project for a couple weeks
at a time so I can remain productive.”

“

7117-214/514

7217-214/514

Easy and fast for developers to
publish and use packages
Open to rapid change,
no gate keeping,
experimenting with APIs until
they are right

Values
72

7317-214/514

Upstream

Downstream

Decoupled pace, update
at user’s discretion

Easy and fast to
publish and use
for developers

73

7417-214/514

Upstream

Easy and fast to
publish and use
for developers

Breaking changes easy
More common to remove technical
debt, fix APIs
Signaling intention with SemVer
No central release planning
Parallel releases more common

74

7517-214/514

Downstream

Easy and fast to
publish and use
for developers

Technology supports using old +
mixed revisions; decouples
upstream and downstream pace
Choice to stay up to date
Monitoring with social mechanisms
and tools (e.g., dependabot)

75

7617-214/514

Friction

Easy and fast to
publish and use
for developers

Rapid change requires constant
maintenance
Emphasis on tools and community,
often grassroots

76

7717-214/514

Last week’s tutorial is
out of date today.”“

77

7817-214/514

Backward compatibility
for clients

Timely access to current
research for end users

Easy and fast to publish/use
for developers

Contrast

7917-214/514

How to Break an API?

Photo Credit: axi11a (cc)

In Eclipse, you don’t.

In CRAN, you reach out to affected
downstream developers.

In Node.js, you increase
the major version number.

79

8017-214/514

Summary
Heavy reliance on dependencies

● Package managers and module systems help organize
● Manage costs and risks of dependencies

Next time:

Modularly organize systems at scale

● Modules
● Distributed systems
● Microservices
● Event-based systems / stream processing

Testing with Stubs and Chaos Engineering

8117-214/514

Bonus: Cost of Dependencies

8217-214/514

Recall: Ever looked at NPM Install’s output?

8317-214/514

Recall: Ever looked at NPM Install’s output?

8417-214/514

Monitoring for Vulnerabilities
Dependency manager helps knowing what
dependencies are used (“bill of materials”)

Various tools scan for known vulnerabilities -- use them

Have a process

Many false positive alerts, not exploitable

8517-214/514

Recommended reading:
https://republicans-oversight.house.gov/wp-content/uploads/2018/12/Equifax-Report.pdf

https://republicans-oversight.house.gov/wp-content/uploads/2018/12/Equifax-Report.pdf

8617-214/514

Supply Chain Attacks more common
Intentionally injecting attacks in packages

● Typosquatting: expres
● Malicious updates: us-parser-js

Review all packages? All updates?

Sandbox applications? Sandbox packages?

8717-214/514

Using a Dead Dependency?
No more support?

No fixes to bugs and vulnerabilities?

What now?

8817-214/514

Open Source Health and Sustainability
Predict which packages will be maintained next year?

Indicators?

Motivation of maintainers?

Who funds open source?

Commercial dependencies? Commercial support?

