
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Designing for Robustness in
Large & Distributed Systems

Jonathan Aldrich Bogdan Vasilescu

217-214/514

Lecture 19 Quiz
On Canvas

317-214/514

Administrative
● Homework 6 has started

○ If you want the “discuss your design” bonus points, plan quickly!
● Midterm grades out soon

○ Waiting for a few make-up exams
○ Will recap common mistakes soon, hopefully on Thursday

417-214/514

Important HW6 decisions: What happens
when B or E fail?

Your framework

A plugin

Some web API

517-214/514

Software Quality Assurance
What does quality mean in the context of modern Software
Systems?

617-214/514

Software Quality Assurance
What does quality mean in the context of modern Software
Systems? It depends, on user expectations. Some examples:

● Simplicity (of UI)
● Reliability
● Offering expected features
● Customizability
● Speed/Performance

Compare with design goals

717-214/514

Software Quality Assurance
How do you ensure quality in software systems?

817-214/514

Software Quality Assurance
Is a well-established area with its own methods, models, and
standards. It could fill a course of its own, but is so closely
intertwined with software design that we teach some of it here.

917-214/514

Software Quality Assurance
Is a well-established area with its own methods, models, and
standards. It could fill a course of its own, but is so closely
intertwined with software design that we teach some of it here.

● Much like design, can think of multiple tiers:
○ Goals: high-level objectives like the ones discussed,

defined in the requirement specification
○ Standards: well-defined (incl. ISO-standardized)

mappings of goals to measurable objectives
○ Techniques & metrics: tools & measurements

used to ensure the system meets
the standards

Goals

Techniques Metrics

Standards

1017-214/514

Excerpt of the ISO/EIC 9216 SQA Standard

https://en.wikipedia.org/wiki/ISO/IEC_9126#Developments

1117-214/514

Software Quality Assurance
Is a well-established area with its own methods, models, and
standards. It could fill a course of its own, but is so closely
intertwined with software design that we teach some of it here.

● Factors in at every stage of software development
○ Model-driven design to create high-quality specifications
○ Designing using established design principles & patterns
○ Testing to measure conformance to specifications during development
○ Issue trackers to handle quality issues post-release

1217-214/514

Software Quality Assurance
Is a well-established area with its own methods, models, and
standards. It could fill a course of its own, but is so closely
intertwined with software design that we teach some of it here.

● Is supported by a host of processes & tools
○ Code review
○ Testing
○ Version control
○ Coding practices (linters, documentation requirements)
○ Configuration management
○ SQA Management Plans (variations of processes, compare agile)

1317-214/514

Today
We will talk about SQA specifically in the context of large &
distributed systems, focusing primarily on achieving robustness

● Recapping: robustness challenges in distributed systems
○ See also Lecture 15 (Distributed Systems)

● Testing distributed systems
○ With a discussion on test doubles

● Further guidelines for improving robustness

1417-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices

Designing for
bustness

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

1517-214/514

Recall: Modern software is dominated by
systems composed of [components, APIs,

modules], developed by completely different
people, communicating over a network!

1617-214/514

For example

● 3rd party Facebook apps
● Android user interface
● Backend uses Facebook data

1717-214/514

Database Server

Credit card server

Android Phone

1817-214/514

Testing (in) Distributed Systems

1917-214/514

Testing in the Context of REST API Calls
Is conceptually no different:

● Test happy path
● Test error behavior

But different in instantiation:

● Correct timeout handling? Correct retry when connection down?
● Invalid response detected?
● Graceful degradation?

Need to understand possible error behavior first

2017-214/514

Recall: Facebook Example

● 3rd party Facebook apps
● Android user interface
● Backend uses Facebook data

2117-214/514

Assume an App

Code FacebookAndroid client

void buttonClicked() {

 render(getFriends());

}

List<Friend> getFriends() {

 Connection c = http.getConnection();

 FacebookAPI api = new FacebookAPI(c);

 return api.getFriends("john");

}

2217-214/514

Code

What are we testing here? What can go
wrong and needs to be confirmed correct?

FacebookAndroid client

void buttonClicked() {

 render(getFriends());

}

List<Friend> getFriends() {

 Connection c = http.getConnection();

 FacebookAPI api = new FacebookAPI(c);

 return api.getFriends("john");

}

2317-214/514

How Do We Test?

Code FacebookAndroid client

void buttonClicked() {

 render(getFriends());

}

List<Friend> getFriends() {

 Connection c = http.getConnection();

 FacebookAPI api = new FacebookAPI(c);

 return api.getFriends("john");

}

2417-214/514

Eliminating the Android Dependency

Code FacebookTest Driver

@Test void testGetFriends() {

 assert getFriends() == ...;

}

List<Friend> getFriends() {

 Connection c = http.getConnection();

 FacebookAPI api = new FacebookAPI(c);

 return api.getFriends("john");

}

2517-214/514

Eliminating the Remote Service Dependency?

Code FacebookTest Driver

@Test void testGetFriends() {

 assert getFriends() == ...;

}

List<Friend> getFriends() {

 Connection c = http.getConnection();

 FacebookAPI api = new FacebookAPI(c);

 return api.getFriends("john");

}

How about this call?

2617-214/514

● Facebook withdraws its DNS routing information?
● This affects testing too!

https://blog.cloudflare.com/october-2021-facebook-outage/

Recall: What will you do if

https://blog.cloudflare.com/october-2021-facebook-outage/

2717-214/514

Test Doubles
● Stand in for a real object under test
● Elements on which the unit testing depends (i.e. collaborators),

but need to be approximated because they are
○ Unavailable
○ Expensive
○ Opaque
○ Non-deterministic

● Not just for distributed systems!

http://www.kickvick.com/celebrities-stunt-doubles

http://www.kickvick.com/celebrities-stunt-doubles

2817-214/514

Eliminating the Remote Service Dependency

Code Facebook
InterfaceTest Driver

@Test void testGetFriends() {

 assert getFriends() == ...;

}

List<Friend> getFriends() {

 Connection c = http.getConnection();

 FacebookAPI api = new FacebookStub(c);

 return api.getFriends("john");

}

Facebook
Stub

class FacebookStub

 implements FacebookAPI {

 void connect() {}

 List<Node> getFriends(String name) {

 if (name.equals("john")) {

 return List.of(...);

 } // ...

 }

}

2917-214/514

Fakes: Fully functional class with simplified implementation

Stubs: Artificial class that returns pre-configured data

Mocks: Instrumented variant of real class with fine-grained control

● Tend to be used interchangeably in practice
○ Most frameworks/libraries that support this focus on mocking (e.g.,

Mockito, ts-mocks), but also enable stubbing.
○ Rule of thumb: with stubs, you just assert against values returned, while

with mocks, you assert against the actual (instrumented) object

Types of Test Doubles

3017-214/514

Which Type Was This?

Code Facebook
InterfaceTest Driver

@Test void testGetFriends() {

 assert getFriends() == ...;

}

List<Friend> getFriends() {

 Connection c = http.getConnection();

 FacebookAPI api = new Facebook???(c);

 return api.getFriends("john");

}

Facebook
???

class Facebook???

 implements FacebookAPI {

 void connect() {}

 List<Node> getFriends(String name) {

 if (name.equals("john")) {

 return List.of(...);

 } // ...

 }

}

3117-214/514

How About This?

3217-214/514

How Would You Test This?
@Test void testRecommendFriends() {

 ???;

}

List<Friend> recommendFriends(Person person) {

 Recommender m = AIFriendRecommender.newInstance();

 Map<Friend, Float> friendScores =

 m.getRankedFriendCandidates(person);

 return friendScores.entrySet().stream()

.sorted(e -> -e.getValue())

.limit(10).map(e -> e.getKey())

.collect(Collectors.toList());

}

3317-214/514

Test Doubles
Concern that the third-party API might fail is not the only reason to
use test doubles

● Most big, public APIs are extremely reliable
● Ideas for other reasons?

3417-214/514

Test Doubles
Concern that the third-party API might fail is not the only reason to
use test doubles

● Most big, public APIs are extremely reliable
● Ideas for other reasons?

○ Modularity/isolation: testing just our code speeds up development (conf.
unit vs. integration testing), simplifies prototyping

○ Performance: APIs can be slow (network traffic, large databases, …)
■ Good test suites execute quickly; that pays off by enabling more test scenarios

○ Simulating other types of problems: changing APIs, slow responses, …

3517-214/514

Fallacies of Distributed Computing by Peter Deutsch

1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn't change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.

3617-214/514

How to Test Alternatives To:
1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn't change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.

3717-214/514

Fault injection

● Mocks can emulate failures such as timeouts

● Allows you to verify the robustness of system

Code Mock
FacebookTest driver

class FacebookSlowStub implements FacebookAPI {

 void connect() {}

 List<Node> getFriends(String name) {

 Thread.sleep(4000);

 if (name.equals("john")) {

 return List.of(...);

 } // ...

 }

}

3817-214/514

Fault injection
Code Mock

FacebookTest driver

class FacebookErrorStub implements FacebookAPI {

 void connect() {}

 int counter = 0;

 List<Node> getFriends(String name) {

 counter++;

if (counter % 3 == 0)

 throw new SocketException("Network is unreachable");

 else if (name.equals("john")) {

 return List.of(...);

 } // ...

 }

}

3917-214/514

How Test Doubles Help
1. Speed: simulate response without going through the API

class FakeFacebook implements FacebookInterface {
 void connect() {}
 List<Node> getFriends(String name) {
 if ("john".equals(name)) {
 List<Node> result=new List();

 result.add(…);
 return result;

 }
 }
}

4017-214/514

How Test Doubles Help
1. Speed: simulate response without going through the API
2. Stability: guaranteed deterministic return, reduces flakiness

class FakeFacebook implements FacebookInterface {
 void connect() {}
 List<Node> getFriends(String name) {
 if ("john".equals(name)) {
 List<Node> result=new List();

 result.add(…);
 return result;

 }
 }
}

4117-214/514

How Test Doubles Help
1. Speed: simulate response without going through the API
2. Stability: guaranteed deterministic return, reduces flakiness
3. Coverage: reliably simulate problems (e.g., return 404)

class FakeFacebook implements FacebookInterface {
 void connect() {}
 List<Node> getFriends(String name) {
 if ("john".equals(name)) {
 List<Node> result=new List();

 result.add(…);
 return result;

 }
 }
}

4217-214/514

How Test Doubles Help
1. Speed: simulate response without going through the API
2. Stability: guaranteed deterministic return, reduces flakiness
3. Coverage: reliably simulate problems (e.g., return 404)
4. Insight: expose internal state

class FakeFacebook implements FacebookInterface {
 void connect() {}
 List<Node> getFriends(String name) {
 if ("john".equals(name)) {
 List<Node> result=new List();

 result.add(…);
 return result;

 }
 }
}

4317-214/514

How Test Doubles Help
1. Speed: simulate response without going through the API
2. Stability: guaranteed deterministic return, reduces flakiness
3. Coverage: reliably simulate problems (e.g., return 404)
4. Insight: expose internal state
5. Development: presume functionality not yet implemented

class FakeFacebook implements FacebookInterface {
 void connect() {}
 List<Node> getFriends(String name) {
 if ("john".equals(name)) {
 List<Node> result=new List();

 result.add(…);
 return result;

 }
 }
}

4417-214/514

Design Implications
● Think about testability when writing code
● When a mock may be appropriate, design for it
● Hide subsystems behind an interface
● Use factories, not constructors to instantiate
● Use appropriate tools

○ Dependency injection or mocking frameworks

4517-214/514

Design: Testability
● Single responsibility principle
● Dependency Inversion Principle (DIP)

○ High-level modules should not depend on low-level modules; both should depend
on abstractions. Abstractions should not depend on details. Details should
depend upon abstractions.

● Law of Demeter: Don’t acquire dependencies through dependencies.
○ avoid: this.getA().getB().doSomething()

● Use factory pattern to instantiate new objects, rather than new.
● Use appropriate tools, e.g., dependency injection or mocking

frameworks

4617-214/514

Are Mocks enough to test all of these?
1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn't change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.

4717-214/514

Failures in Distributed Systems

4817-214/514

What Can Go Wrong?
Let’s say Service A is your framework, B is a plugin

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

4917-214/514

What Can Go Wrong?
Let’s say Service A is your framework, B is a plugin

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

5017-214/514

What Can Go Wrong?
Let’s say Service A is your framework, B is a plugin

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

5117-214/514

What Can Go Wrong?
Let’s say Service A is your framework, B is a plugin

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

5217-214/514

There’s A Lot To Test
Anything can fail, in lots of surprising ways. Let’s (briefly) talk about
testing & recovery in the wild

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

5317-214/514

Chaos Engineering
Experimenting on a distributed system in order to build confidence
in the system’s capability to withstand turbulent conditions in
production

5417-214/514

You Don’t Know It Works Until You Break It

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

5517-214/514 http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

5617-214/514

How Can Your Framework Tell the Difference?

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

5717-214/514

Handle Errors Locally

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

5817-214/514

Error Isolation
● In large systems, something fails all the time

○ In large systems, some server or disk fails every few minutes/seconds
● You can’t prevent meteor strikes, but you do have to keep

people binge-watching!
● Key goal: protect the caller

○ Faulty services should try to notify their dependents
○ Callers use retries, timeouts; must have ways to pivot
○ Dense graphs are terrible for this →

Organize your microservices carefully

https://www.researchgate.net/figure/Dense-Graph-with-8-vertex_fig2_349931766

5917-214/514

Error Isolation – Netflix Dependency graph

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

6017-214/514

What will you do if
● An API your data plugin uses is temporarily down?

○ Or returns a surprising error code

Lecture 15 repeat

6117-214/514

Retry!
● Maybe wait a bit.

○ How Long? How often?

Lecture 15 repeat

6217-214/514

Retry!
● Exponential Backoff

○ Retry, but wait exponentially longer each time
○ Assumes that failures are exponentially distributed

■ E.g., a 10h outage is extremely rare, a 10s one not so crazy
○ E.g.:
const delay = retryCount => new Promise(resolve =>

setTimeout(resolve, 10 ** retryCount));

const getResource = async (retryCount = 0, lastError = null) => {
 if (retryCount > 5) throw new Error(lastError);
 try {
 return apiCall();
 } catch (e) {
 await delay(retryCount);
 return getResource(retryCount + 1, e);
 }
};

https://www.bayanbennett.com/posts/retrying-and-exponential-backoff-with-promises/

Lecture 15 repeat

6317-214/514

Retry!
● Still need an exit-strategy

○ Learn HTTP response codes
■ Don’t bother retrying on a 403 (go find out why)

○ Use the API response, if any
■ Errors are often documented -- e.g., GitHub will send a “rate limit exceeded” message

const delay = retryCount => new Promise(resolve =>
setTimeout(resolve, 10 ** retryCount));

const getResource = async (retryCount = 0, lastError = null) => {
 if (retryCount > 5) throw new Error(lastError);
 try {
 return apiCall();
 } catch (e) {
 await delay(retryCount);
 return getResource(retryCount + 1, e);
 }
};

https://www.bayanbennett.com/posts/retrying-and-exponential-backoff-with-promises/

Lecture 15 repeat

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

6417-214/514

Handling Recovery

● We need a fallback plan
○ Can’t just e.printStackTrace()
○ What can we do?

Lecture 15 repeat

6517-214/514

Proxy Design Pattern
● Local representative for remote object

○ Create expensive obj on-demand
○ Control access to an object

● Hides extra “work” from client
○ Add extra error handling, caching
○ Uses indirection

https://refactoring.guru/design-patterns/proxy

Lecture 15 repeat

6617-214/514

Example: Caching
interface FacebookAPI {

List<Node> getFriends(String name);
}
class FacebookProxy implements FacebookAPI {

FacebookAPI api;
HashMap<String,List<Node>> cache = new HashMap…
FacebookProxy(FacebookAPI api) { this.api=api;}

List<Node> getFriends(String name) {
result = cache.get(name);
if (result == null) {

result = api.getFriends(name);
cache.put(name, result);

}
return result;

}
}

Lecture 15 repeat

6717-214/514

Example: Caching and Failover
interface FacebookAPI {

List<Node> getFriends(String name);
}
class FacebookProxy implements FacebookAPI {

FacebookAPI api;
HashMap<String,List<Node>> cache = new HashMap…
FacebookProxy(FacebookAPI api) { this.api=api;}

List<Node> getFriends(String name) {
try {

result = api.getFriends(name);
cache.put(name, result);
return result;

} catch (ConnectionException c) {
return cache.get(name);

}
}

Lecture 15 repeat

6817-214/514

Example: Redirect to Local Service
interface FacebookAPI {

List<Node> getFriends(String name);
}
class FacebookProxy implements FacebookAPI {

FacebookAPI api;
FacebookAPI fallbackApi;
FacebookProxy(FacebookAPI api, FacebookAPI f) {

this.api=api; fallbackApi = f; }

List<Node> getFriends(String name) {
try {

return api.getFriends(name);
} catch (ConnectionException c) {

return fallbackApi.getFriends(name);
}

}

Lecture 15 repeat

6917-214/514

Risk Management
● Protect your nodes from their callers, too

○ Robustness in distributed systems frequently comes down to managing
traffic

● Allow nodes to decline work that won’t be completed (in time)
○ Referred to as backpressure: downstream components can “push back”

against upstream ones, signaling that they are too busy.
○ Upstream components can react by sending work elsewhere, requesting

more downstream nodes be provisioned

7017-214/514

Error Isolation
● Isn’t always obvious

○ If node B doesn’t respond to node A, what does it really know?
● This factors into recovery

○ If A thinks B is dead, it should notify the system manager to not send
anyone else there

○ B might have many customers, which will all need to be informed
● Entire courses are devoted to distributed systems & algorithms;

worth taking if you want to work with large systems

7117-214/514

Considerations in HW6
● What should the framework do when a plugin fails?

7217-214/514

Considerations in HW6
● What should the framework do when a plugin fails?

○ Recall this figure? Think of framework as Service A, plugin as B, and the
API that B depends on as E

7317-214/514

Considerations in HW6
● What should the framework do when a plugin fails?
● First answer: what should a plugin do when the API it uses

doesn’t respond?

7417-214/514

Considerations in HW6
● What should the framework do when a plugin fails?
● First answer: what should a plugin do when the API it uses

doesn’t respond? General strategy:
○ Retry (with backoff)
○ Fallback: cached data or partial completion
○ Otherwise, gracefully exit & notify framework

7517-214/514

Considerations in HW6
● Next answer: What should the framework do when a plugin

fails?
○ Trust the interface: provide mechanism for plugin to indicate API failure

(& other errors), then provide paths for those (e.g., respond with 401)
○ If a plugin doesn’t respond, it probably wasn’t an API failure. Consider

reprovisioning it and in the meantime responding with 503
● Of course, this is a bit overkill for now :) But good to think about

○ You should definitely provide error handling path between plugin &
framework, but graceful recovery isn’t really necessary.

○ Factors into testing: we require test-cases with Test Doubles
■ Which are, of course, also useful more generally

7617-214/514

Summary
● Software Quality plays into all aspects of software development
● Testing is a key quality control mechanism
● Distributed systems require rethinking testing

○ To achieve isolation, use test doubles
○ Which are useful for several reasons! Rapid prototyping, simulating

failures, testing complicated behavior
● Robustness goes beyond test cases

○ To really error-proof a system, we have to stress-test it

