Principles of Software Construction:
Objects, Design, and Concurrency

A Tour of the 23 GoF Design Patterns

Bogdan Vasilescu Jonathan Aldrich

Carnegie Mellon University
School of Computer Science

ttttttttttttttttt

17-214/514

1 [@s3p

Registration is soon! Consider:

Do you want to gain experience in SE issues above the level of class design...
e ...particularly working in teams on long-running systems?
o 17-313, Foundations of Software Engineering, Padhye.

e ...but make it ML?
o 17-400: Machine Learning and Data Science at Scale, Miller.

Are you an undergrad CS student looking to fill Logic and Languages, OR do you

want to learn more about programming languages and compiler, OR do you really
like Jonathan?

e 17-363/17-663/17-819, Programming Language Pragmatics, Aldrich & Titzer

Forget all that, do you really just want to go very deep on web app development?
e 17-437/17-637, Web Application Development, Eppinger

17-214/514 2 [@s3p

Midterm Question: Decorator

abstract class OrderDecorator extends CharSorter {

public OrderDecorator() {

public boolean comesBefore(char i, char j) {

17-214/514

class SpacesFirstSorter extends OrderDecorator {

public SpacesFirstSorter() {

@Override
public boolean comesBefore(char i, char j) {

3 [&)S3D

1Ay -

e Published 1994, widely known
e 23 Patterns: considered

canonical, BUT:
o not all patterns commonly used
o not all common patterns included ¢

e Good to where to look up when
somebody mentions the “Bridge

pattern”

A0 A ADNSAM-NOS!

m
wh
-_g
o]
=
Z

17-214/514

Today’s goal is not to cover all 23 patterns.

Instead, touch on a bunch of them, especially the ones that are still useful,
SO you recognize the words when you're out in the Real World.

And, will practice quickly reasoning about design situations/alternatives.

Key takeaways:

e Design patterns capture a shared vocabulary; knowing/recognizing
them makes it easier for you to design new systems; understand
existing systems; and write systems that other people can
understand.

e The key distinguishing feature between patterns is intent.

17-214/514 s [@)s3D

Grouping Patterns

|. Creational Patterns
ll. Structural Patterns

[ll. Behavioral Patterns

17-214/514 6 L@S3D

All GoF Design Patterns

Creational:
1. Abstract factory 9. Decorator
2. Builder 10.Facade
3. Factory method 11.Flyweight
4. Prototype 12.Proxy
5. Singleton

Behavioral:
Structural: 9. Chain of
1. Adapter Responsibility
2. Bridge 10.Command
3. Composite 11.Interpreter

17-214/514

16.lterator
17.Mediator
18.Memento
19.0bserver
20.State

21.Strategy
22.Template method
23.Visitor

7 [Bs3p

Course so far...

Creational:

Abstract factory
Builder

Factory method
Prototype
Singleton

AR ol

Structural:

1. Adapter

2. Bridge

3. Composite

17-214/514

9. Decorator
10.Facade
11.Flyweight
12.Proxy

Behavioral:

9. Chain of
Responsibility

10.Command

11.Interpreter

16.1terator

17 .Mediator
18.Memento
19.0bserver
20.State

21.Strategy
22.Template method
23.Visitor

s [@s3D

Course so far...

Creational:

Abstract factory
Builder

Factory method
Prototype
Singleton

AR ol

Structural:

1. Adapter

2. Bridge

3. Composite

17-214/514

9. Decorator
10.Facade
11.Flyweight
12.Proxy

Behavioral:

9. Chain of
Responsibility

10.Command

11.Interpreter

Not in the book:
e Model view controller

e Promise
e Module (JS)

16.1terator

17 .Mediator
18.Memento
19.0bserver
20.State

21.Strategy
22.Template method
23 .Visitor

o [@s3D

Patterns we will mostly skip

Creational:

1. Abstract factory
2. Builder

3. Factory method
4. Prototype

5. Singleton

Structural:

1. Adapter
2. Bridge

3. Composite
17-214/514

9. Decorator
10.Facade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of
Responsibility
10.Command
11.Interpreter

16.Iterator
17 .Mediator
18.Memento
19.0bserver
20.State
21.Strateqgy
22. Template method
23.Visitor

10 [&)S3D

Warm Up Scenario

You are developing a mobile application for cities where users can
report potholes and similar problems (with photos) and city crews
can investigate, prioritize, and address reports.

Design problem 1: You want to create monthly reports. However,
different cities want this report slightly differently, with different text
on top and sorted in different ways. You want to vary text and
sorting in different ways.

17-214/514 11 [&S3D

All GoF Design Patterns

Creational:

1. Abstract factory
2. Builder

3. Factory method
4. Prototype

5. Singleton

17-214/514 12 [&S3n

(New) Problem:

Imagine you want to write code that supports multiple platforms (e.g., Mac
and Windows)

e \We want code to be platform independent
Suppose we want to create a Window with setTile(String text) and

repaint()

How can we write code that will create the correct Window
for the correct platform, without using conditionals?

17-214/514 13 [&)S3D

Abstract Factory

® Intent — allow creation of families of related objects
independent of implementation

® Use case — look-and-feel in a GUI toolkit
O Each L&F has its own windows, scrollbars, etc.

® Key types — Factory with methods to create each family
member, Products

® Not common in JDK / JavaScript

17-214/514 14 [&)S3D

Abstract Factory Pattern

Main

+ createWindow) ; Wind o

wConcreteF actanys
M=WindowesWidget Factory

+ createWindow) ; Window

+ mainString 7 : waid

wClients
GUIBuilder
+ buildWind oA bstractiridgetF actony @ woid
wAbstractF roducts
whbstractF actonis i mdoes
AbstractWidget Factory

+ zetTitle(String) : waid
+ repaint]): vaid

wConcreteF actons
M=z 05 KW dget Factary

wConcreteProducts
A 5 e

+

createifindow) - Windaw

+
+

setTitlelString) : woid
repdinty: woid

17-214/514

wConcrete Products
bl=c 05 HW ndoner

+
+

zetTitle(String) : woid
repaint) : woid

15 [&)S3D

Abstract Factory lllustration

WidgetFactory
CreateWindow()
CreateScrollBar()
[* |
MotifWidgetFactory |7 | PMWidgetFactory
CreateWindow() CreateWindow()

CreateScrollBar()

CreateScrollBar()

-
|
- 4
|
|
I
|
—

17-214/514

Window [«

Client

A

PMWindow

MotifWindow

ScrollBar |¢

A

1
PMScrollBar

1
MotifScrollBar

Abstract factory compared to?

Creational:

1. Abstract factory
2. Builder

3. Factory method
4. Prototype

5. Singleton

21.Strategy

17-214/514 17 [&S3n

Recall: Factory Method Pattern

® |ntent — abstract creational method that lets subclasses decide which
class to instantiate

® Use case — creating documents in a framework

® Key types — Creator, which contains abstract method to create an
instance

® Java: Iterable.iterator()

® Related Static Factory pattern is very common
O Technically not a GoF pattern, but close enough, e.g. Integer.valueOf(int)

17-214/514 18 [&)S3D

Factory Method lllustration

public interface Iterable<E> {
public abstract Iterator<E> iterator();
}

public class ArrayList<E> implements List<E> {
public Iterator<E> iterator() { ... }

}

public class HashSet<E> implements Set<E> {
public Iterator<E> iterator() { ... }

17-214/514 19 [&)S3D

Static Factory Method Example

public DatabaseConnection {
private DatabaseConnection(String address) { .. }
public static DatabaseConnection create(String address) {
//optional caching or checking..
return new DatabaseConnection(address);

_ é 2

°
3

c = DatabaseConnection.create(“localhost”);

17-214/514 20 [@)sS3D

(New) Problem:

How to handle all combinations of fields when constructing?

public class User {
private final String firstName; //required
private final String lastName; //required
private final int age; //optional
private final String phone; //optional
private final String address; //optional

Related problems:
e How can a class (the same construction process) create different
representations of a complex object?
e How can a class that includes creating a complex object be simplified?

17-214/514 21 [@)S3D

Solution 1

public User(String firstName, String lastName) {
this(firstName, lastName, 0);

by

public User(String firstName, String lastName, int age) {
this(firstName, lastName, age, "");

by

public User(String firstName, String lastName, int age, String phone) {
this(firstName, lastName, age, phone, "");

by

public User(String firstName, String lastName, int age, String phone, String address) {
this.firstName = firstName;
this.lastName = lastName;
this.age = age;
this.phone = phone;
this.address = address;

Bad (code becomes harder to read and maintain)
17-214/514 httos: //ilordiales.wordpress.com/2012/12/13/the-builder-pattern-in-practice/ 22 [g)s3D

Solution 2: default no-arg constructor plus setters and getters
for every attribute

public class User { public int getAge() {
private String firstName; // required return age;
private String lastName; // required }

private int age; // optional
private String phone; // optional
private String address; //optional }

public void setAge(int age) {
this.age = age;

public String getPhone() {

public String getFirstName() { return phone;

return firstName;

} oo |

public void setFirstName(String firstName) { publ}c void setPhone(String phone) {
this.firstName = firstName;) this.phone = phone;

}

public String getLastName() { public String getAddress() {
return lastName; return address;

} }

public void setLastName(String lastName) { public void setAddress(String address) {
this.lastName = lastName; this.address = address;

} }

}

Bad (potentially inconsistent state, mutable)

17-214/514 httos: //ilordiales.wordpress.com/2012/12/13/the-builder-pattern-in-practice/ 23 @)530

SOIUtion 3 public static class UserBuilder {

private final String firstName;

public class User { private final String lastName;
private final String firstName; // required private int age;
private final String lastName; // required private String phone;
private final int age; // optional private String address;
private final String phone; // optional
private final String address; // optional public UserBuilder(String firstName,
String lastName) {
private User(UserBuilder builder) { th%s.firstName = firstName;
this.firstName = builder.firstName; this.lastName = lastName;
this.lastName = builder. lastName; }
this.age = builder.age; , .
this.phone = builder.phor Ppublic User getUser() { ierBuilder age(int age) {
this.address = builder.a¢ return new I€ = age;
} User.UserBuilder("Jhon", "Doe") this;
.age(30)
public String getFirstName(-phone("1234567")

.address("Fake address 1234") serBuilder phone(String phone) {

i i Lbuild(); ione = phone;
public String getLastName()) this;

public int getAge() { ...]

public String getPhone() { ... } [] e

public String getAddress() { ... } } '

17-214/514 httos: //ilordiales.wordpress.com/2012/12/13/the-builder-pattern-in-practice/ 24

Builder Pattern

® Intent — separate construction of complex object from
representation so same creation process can create
different representations

® Use case — converting rich text to various formats
® [ypes — Builder, ConcreteBuilders, Director, Products
® StringBuilder (Java), DirectoryBuilder (HW2)

17-214/514 25 [d)S3D

Gof4 Builder
lllustration

® Emulates named parameters in
languages that don’t support them

® Emulates 2" constructors or
factories with n builder methods, by
allowing them to be combined freely

® Cost is an intermediate (Builder)
object

https://refactoring.guru/design-patterns/builder

17-214/514

b = new ConcreteBuilderl()
d = new Director(b)

d.make()

Productl p = b.getResult()

Client

Builder

«interface»

I

Director

- builder: Builder

+ reset()

+ buildStepA()
+ buildStepB()
+ buildStepZ()

+ Director(builder)

+ changeBuilder(builder)

+ make(type)

A
......... lemcmmmmme
Concrete Concrete
Builderl Builder2

- result: Productl

- result: Product2

+ reset()

+ buildStepA()
+ buildStepB()
+ buildStepZ()
+ getResult():

+ reset()

+ buildStepA()
+ buildStepB()
+ buildStepZ()
+ getResult():

Productl Product2
v v
Productl Product2

builder.reset()

if (type =="simple”) {
builder.buildStepA()

}else {
builder.buildStepB()
builder.buildStepZ()

}

result = new Product2()
result.setFeatureB()

return this.result

26 Ld)S3D

Builder Code Example

NutritionFacts twolLiterDietCoke =
new NutritionFacts.Builder("Diet Coke", 240, 8).sodium(1).build();

public class NutritioanFacts {
public static class Builder {
public Builder(String name, int servingSize,

int servingsPerContainer) { ... }
public Builder totalFat(int val) { totalFat = val; }
public Builder saturatedFat(int val) { satFat = val; }
public Builder transFat(int val) { transFat = val; }
public Builder cholesterol(int val) { cholesterol = val; }

... [/ 15 more setters
public NutritionFacts build() {
return new NutritionFacts(this);
}
}

private NutritionFacts(Builder builder) { ... }
}

1/-4;-1-/ gL 27) IV

(New) Problem:

e Ensure there is only a single instance of a
class (e.g., java.lang.Runtime)

e Provide global access to that class

17-214/514 28 [d)S3D

Singleton Pattern

® Intent — ensuring a class has only one instance

® Use case — GoF say print queue, file system, company in
an accounting system

O Compelling uses are rare but they do exist
® Key types — Singleton
® Java: java.lang.Runtime.getRuntime(),
java.util.Collections.emptylList()

17-214/514 20 [d)S3D

Singleton lllustration

public class Elvis {

private static final = new OF
public static () { return 5 0

private () {}

const elvis = { .. }
function getElvis() {

export { getElvis }

17-214/514 30 Ld)S3D

Singleton Discussion

Singleton = global variable
No flexibility for change or extension

Tends to be overused

17-214/514 31 Ld)S3D

Course so far...

Creational:
1. Abstract factory
2. Builder
3. Factory method

d—Frodenios
5. Singleton

17-214/514 32 %SSD

Course so far...

Structural:

1. Adapter
2. Bridge

3. Composite
17-214/514

9. Decorator
10.Facade
11.Flyweight
12.Proxy

33 Ld)S3D

Recall: The Adapter C

17-214/514

«interface»

Client

Client Interface

https://refactoring.guru/design-patterns/adapter

+ method(data)

D>

iesign Pattern

Adapter

Service

- adaptee: Service P—=|...

+ method(data)

+ serviceMethod(specialData)

specialData = convertToServiceFormat(data)
return adaptee.serviceMethod(specialData)

34 Ld)s3D

Recall: The Adapter
Design Pattern

Applicability

You want to use an existing class,
and its interface does not match the
one you need

You want to create a reusable class
that cooperates with unrelated
classes that don’t necessarily have
compatible interfaces

You need to use several
subclasses, but it's impractical to
adapt their interface by subclassing
each one

17-214/514

wstereotypes

«stereotyvpes
Client

Target
Tabstract }
+Request]] fabstract}

#stereotvpes «stereotvpes
Adapler adaptee Adapltee
+Request[] +5SpecificRequest]]

Request]{ &

adaptee. SpecificRequest()
h

Consequences

Exposes the functionality of an object in
another form

Unifies the interfaces of multiple
incompatible adaptee objects

Lets a single adapter work with multiple
adaptees in a hierarchy

-> Low coupling, high cohesion

35 Ld)S3D

Adapter vs Strategy?

Context .
«interface»

- strategy O—s Strategy «interface»

+ setStrategy(strategy) + execute(data) Client >| Client Interface
+ doSomething() A + method(data)
strategy.execute() H

—

ConcreteStrategies

| Client I- ----- = Adapter Service

+ execute(data) - adaptee: Service >
str = new SomeStrategy() T
context.setStrategy(str) + method(data) + serviceMethod(specialData)
context.doSomething()
-

specialData = convertToServiceFormat(data)

other = new OtherStrategy() return adaptee.serviceMethod(specialData)

context.setStrategy(other)
context.doSomething()

17-214/514 36 Ld)S3D

(New) Problem: There are two types of thread schedulers,

and two types of operating systems or "platforms".

17-214/514

ThreadScheduler

A

PreemptiveThreadScheduler

TimeSlicedThreadScheduler

T T

UnixPTS

WindowsPTS UnixTSTS WindowsTSTS

image source: https://sourcemaking.com

37 Ld)S3D

(New) Problem: we have to define a class for each

permutation of these two dimensions

ThreadShceduler

PreemptiveThreadScheduler

i
PN
[-

UnixPTS

TimeSlicedThreadScheduler

s
Y

WindowsPTS

UnixTSTS

JVM_PTS

WindowsTSTS

JVM_TSTS

How would you redesign this?

17-214/514

image source: https://sourcemaking.com

38 Ld)S3D

Bridge Pattern: Decompose the component's interface and

Implementation into orthogonal class hierarchies.

ThreadScheduler

2

PreemptiveThreadScheduler

ThreadScheduler_Implementation

LY

TimeSlicedThreadScheduler

UnixPTS

image source: https://sourcemaking.com

17-214/514

WindowsPTS

JVYM_PTS

39 Ld)S3D

2. Bridge

® |ntent — decouple an abstraction from its
Implementation so they can vary independently

® Use case — portable windowing toolkit
® Key types — Abstraction, Implementor

® Java: JDBC, Java Cryptography Extension (JCE),
Java Naming & Directory Interface (JNDI)

17-214/514 a0 [@s3p

Bridge compared to...

Strategy? Adapter?

17-214/514 a1 [@s3p

Course so far...

Structural:
1. Adapter
2. Bridge

3. Composite
17-214/514

9. Decorator
10.Facade
11.Flyweight
12.Proxy

42 I@)SSD

Decorator vs Composite?

Client

!

«interface»
Component

a = new ConcComponent()

b = new ConcDecoratorl(a)
¢ = new ConcDecorator2(b)
c.execute()

+ execute()

Concrete
Component

Base Decorator

Context «interface»
Component
+operation () -children
// Decorator -> Decorator -> Component A
Leaf Composite
-parent
+operation() +operation() &
/ +add(in ¢ : Component) 1
+remove(in c : Componen
<> (P Y

- wrappee: Component

operation() {

+ execute()

17-214/514

for (cin children)

+ BaseDecorator(c: Component) wrappee = ¢ o,
+ execute() } c.operation();
4 wrappee.execute()
Concrete []
Decorators
+ execute() O | super::execute()
extra()
v DAY a3 [@s3p

Decorator vs Strategy?

interface GamelLogic { interface GamelLogic {
isValidMove(w, x, V) isValidMove(w, x, V)
move(w, X, V) move(w, X, V)
}
class BasicGamelLogic
class BasicGamelogic implements GamelLogic {

implements GamelLogic { .. } constructor(board) { .. }
isValidMove(w, x, y) { .. }
class AbstractGodCardDecorator move(w, x, yv) { .. }

implements GamelLogic { .. } }
class PanDecorator extends
class PanDecorator extends BasicGamelLogic {
AbstractGodCardDecorator move(w, x, y} {
implements GamelLogic { .. }

Design Problem

Context: You are developing a mobile application for cities where
users can report potholes and similar problems (with photos) and
city crews can investigate, prioritize, and address reports.

Problem: You want to group problems that are related into a
problem group with a new name, and those might be grouped
again, but still count them directly. Those groups should still show
up in reports and all scheduling activities.

17-214/514 a7 [Bs3p

Course so far...

Structural:

1. Adapter
2. Bridge

3. Composite
17-214/514

9. Decorator
10.Facade
11.Flyweight
12.Proxy

ag [@sS3D

Facade Pattern

® |ntent — provide a simple unified interface to a set of
interfaces in a subsystem

O GoF allow for variants where the complex underpinnings are
exposed and hidden

® Use case — any complex system; GoF use compiler
® Key types — Facade (the simple unified interface)
® JDK — java.util.concurrent.Executors

17-214/514 a9 [3s3D

Facade example

17-214/514

Customer service Facade

I\

A

Y

Y

Order fullfillment

Billing

Shipping

s0 Ld)S3D

Facade lllustration

Subsystem classes

Facade

[

3/

17-214/514

51 L9)S3D

class SantoriniController {
newGame() { .. }
isValidMove(w, x, yv) { .. }

move(w, X, v) { .. }
getWinner() { .. }

17-214/514 52 Ld)S3D

Facade vs...

...Controller Heuristic
Same idea
Facade for subsystem, controller for use case
...oingleton
Facade sometimes a global variable
Typically little design for change/extension
...Adapter?

17-214/514 53 Ld)S3D

Problem: Imagine implementing a forest of individual trees
In a realtime game

A A A A

MESH MESH (MESH MESH

BARK BARK BARK) BARK.
leAVEs| | ENVES LERVES LéAUtSl

PARANS PARAMS PR AMS PARAMS
@smcu PRSI TION POLITION POSITION

Source: http://gameprogrammingpatterns.com/flyweight.html
17-214/514 54 Ld)sS3D

Trick: most of the fields in these objects are the same

between all of those instances

A

&

2

17-214/514

PARAMS
P&SITION

‘\j

PAZAMS
PaSITION

PARANS
POSITION

PARAMS
PASITIEN

S REraaRgrseE

MOEDEL

MESH ,

BARL. \

LEAVES \

Source: http://gameprogrammingpatterns.com/flyweight.html

55 Ld)S3D

Flyweight Pattern

® |ntent — use sharing to support large numbers
of fine-grained objects efficiently

® Use case — characters in a document
® Key types — Flyweight (instance-controlled!)

o Some state can be extrinsic to reduce number of instances
® Java: String literals (JVM feature), Integer

e “Hash Consing” in functional programming

17-214/514 56 Ld)S3D

Flyweight

Key idea: Avoid
copies of
structurally equal
objects, reuse
object

Requires
Immutable objects
and factory with
caching

17-214/514

FlyweightFactory

- cache: Flyweight[]

+ getFlyweight(repeatingState)

if (cache[repeatingState] == num{\ Context

cache[repeatingState] =

}

return cache[repeatingState]

L4

Flyweight

- repeatingState

+ operation(uniqueState)

new Flyweight(repeatingState) - uniqueState

Client

- flyweight

+ Context(repeatingState, uniqueState)
+ operation()

this.uniqueState = uniqueState
this.flyweight =
factory.getFlyweight(repeatingState)

flyweight.operation(uniqueState)

https://refactoring.guru/design-patterns/flyweight 57 @)SSD

Flyweight lllustration

- character
: 1 [obiects]

ARl ey H> e

column
S object

17-214/514 sg Ld)S3D

Recall: Proxy Design Pattern

e Local representative for remote object %™ 7= servicelnterface
o Create expensive obj on-demand

o Control access to an object
e Hides extra “work™ from client

«interface»

+ operation()

Proxy

- realService: Service

o Add extra error handling, caching [+ proxy(s: service)

o Uses indirection

17-214/514

+ checkAccess()
+ operation()

+ gperation()

if (checkAccess() {

realService.operation()

}

https://refactoring.guru/design-patterns/proxy

realService = 5

59 Ld)S3D

Proxy vs Adapter?

«interface»
Client [—=
Servicelnterface
«interface» + gperation()
Client > Client Interface 4
+ method(data) e e ,
1 1
/N - -
i Proxy Service
]
' - realService: Service [>—=+...
Adapter Service
- adaptee: Service > + Proxy(s: Service) + pperation()
+ checkAccess()
+ method(data) + serviceMethod(specialData) + operation() e e s
specialData = convertToServiceFormat(data) if (checkAccess()) {
return adaptee.serviceMethod(specialData) realService.operation()

}

17-214/514 60 Ld)S3D

Proxy vs Decorator?

_ a = new ConcComponent()
Client b = new ConcDecoratorl(a)
¢ = new ConcDecorator2(b)
c.execute()
g -> ->
«interfaces // Decorator -> Decorator -> Component
. Component |«
Client a|t1terface;o
Servicelnterface + execute()
+ operation() A
leccccccccccccccce e -
X = =
m=m=mm-mmm-e- b | Concrete Base Decorator
- - Component
Proxy Service - wrappee: Component -

- realService: Service [K—>>1... + execute(+ BaseDecorator(c: Component) wrappee = ¢

Xecu
+ Proxy(s: Service) + operation() + execute()
+ checkAccess() 4&
+ operation() realService = o i wrappee.execute()

Concrete
if (checkAccess()) { Decorators
realService.operation() -

}

+ execute() » super:execute()
+ extrao extra()
)

17-214/514 . %SSD

Design Problem

You are developing a mobile application for cities where users can
report potholes and similar problems (with photos) and city crews
can investigate, prioritize, and address reports.

Design problem 4: Some problems point to large pictures stored in
another database and you do not want to keep them in memory,
but load them only when needed.

17-214/514 62 Ld)S3D

Design Problem

You are developing a mobile application for cities where users can
report potholes and similar problems (with photos) and city crews
can investigate, prioritize, and address reports.

Design problem 5: The county has a different system that records
potholes in a different format. You want to include them in your
reports regardless.

17-214/514 63 Ld)S3D

Course so far...

Structural:

1. Adapter
2. Bridge

3. Composite
17-214/514

9. Decorator
10.Facade
11.Flyweight
12.Proxy

64 Ld)S3D

Course so far...

16.Iterator

17 Mediator
18- Memento
19.0bserver
Behavioral: 20 State
9. Chain of 21.Strateqgy
Responsibility 22. Template
10.Command method

17-214/514 65 Ld)S3D

Chain of Responsibility Pattern

® Intent — avoid coupling sender to receiver by passing
request along until someone handles it

® Use case — context-sensitive help facility
® Key types — RequestHandler
® JDK - ClassLoader, Properties

® Exception handling could be considered a form of Chain of
Responsibility pattern

17-214/514 66 Ld)S3D

Toolbar

..\Q\'C\ Window
& / \
o™
Qg,sQ
& Panel
&
< N
SubPanel Form Button
Text ¢ \
Input Button
Button Image Checkbox
17-214/514

4\

«interface»
Handler

<—

Client

+ setNext(h: Handler)
+ handle(request)

h1l = new HandlerA()
h2 = new HandlerB()

A

BaseHandler

Button

- next: Handler

Button

+ setNext(h: Handler)
+ handle(request)

h3 = new Handler(C()
hl.setNext(h2)
h2.setNext(h3)

it
hl.handle(request)

if (next != null)

Jo\

ConcreteHandlers

-

=

+ handle(request)

L

next.handle(request)

if (canHandle(request)) {
/..

} else {
parent::handle(request)

}

https://refactoring.quru/design-patterns/chain-of-responsibility

67 Ld)S3D

https://refactoring.guru/design-patterns/chain-of-responsibility

Command Pattern

® Intent — encapsulate a request as an object, letting you parameterize
one action with another, queue or log requests, etc.

® Use case — menu tree
® Key type — Command (Runnable)
® JDK — Common! Executor framework, etc. -- see higher order function

® Commands may:
® Dbe run repeatedly
® take an argument
® return a value

17-214/514 68 Ld)S3D

Command Pattern

copy = new CopyCommand(editor)

button.setCommand(copy)

Invoker

Client

>

- command

+ setCommand(command)
+ executeCommand()

«interface»
Command

Receiver

+ execute()

+ operation(a,b,c)

https://refactoring.quru/design-patterns/command

17-214/514

f

receiver.operation(params)

Command1 Command2

- receiver
- params

P + execute()
+ Commandl(receiver, params)
+ execute()

I

69 Ld)S3D

https://refactoring.guru/design-patterns/command

Command lllustration

class ClickAction {
constructor(name) { this.name = name }

execute() {

}

let ¢ = new ClickAction("Restart Game")

getElementById("menu").addEventListener("click", c.execute)

getElementById("btn").addEventListener("click", c.execute)

setTimeout(c.execute, 2000)

Object (or function) represents an action, execution deferred, arguments possibly configured early.
Can be reused in multiple places. Can be queued, logged, ...

17-214/514 70 L[g)s3D

Reminder: lterator Pattern

® Intent — provide a way to access elements of a
collection without exposing representation

® Use case — collections

® Key types — lterable, Iterator

O But GoF discuss internal iteration, too

® Java and JavaScript: collections, for-each statement ..

17-214/514 71 L@)s3D

Reminder: lterator lllustration

public interface Iterable<E> {
public abstract Iterator<E> iterator();

}

public class ArrayList<E> implements List<E> {
public Iterator<E> iterator() { ... }

}

public class HashSet<E> implements Set<E> {
public Iterator<E> iterator() { ... }

}

Collection<String> c = ...;

for (String s : c¢) // Creates an Iterator appropriate to c
System.out.println(s);

17-214/514 72 [@s3D

? cl a = new ConcComponent()
server vs. Decorator? [Cee] S
¢ = new ConcDecorator2(b)
c.execute()
«interface» // Decorator -> Decorator -> Component
Component |<
Publie + execute()
ublisher «interface» A
- subscribers: Subscriber[] [>—=>| Subscriber e .
.]
foreach (s in subscribers) - mainState + update(context) L -
s.update(this) + subscribe(s: Subscriber) A Concrete Base Decorator
+ unsubscribe(s: Subscriber) ' Component
mainState = newState + notifySubscribers() Concrete - Wrappee: Component O—
tifySubscrib i i i
notifySubscribers() + mainBusinessLogic() Subscribers + BaseDecorator(c: Component) wrappee - ¢
4\ ______ 2. + execute() + execute()
s = new ConcreteSubscriber() |~ + upd
publisher.subscribe(s) update(context) 43 te(
’ wrappee.execute

’

p——
Decorators

+ execute() » super::execute()
+ extra() extra()
| O

17-214/514 73 %SSD

Observer vs. Promise?

17-214/514 74 [9)s3n

Design Problem

You are developing a mobile application for cities where users can
report potholes and similar problems (with photos) and city crews
can investigate, prioritize, and address reports.

Design problem 6: Every time a report is resolved, one of multiple
actions should be taken (email, text message, ...). The action is
selected by the person creating the report.

17-214/514 75 Ld)s3D

Design Problem

You are developing a mobile application for cities where users can
report potholes and similar problems (with photos) and city crews
can investigate, prioritize, and address reports.

Design problem 7: Every time a report is resolved, multiple follow-
up actions should be performed. Results should be added to a
database, an email should be sent, a supervisor should be
informed, etc. More actions might be added later.

17-214/514 76 Ld)S3D

Observer vs. Strategy

foreach (s in subscribers)

s.update(this)

mainState = newState
notifySubscribers()

17-214/514

Publisher

- subscribers: Subscriber]
- mainState

—>

«interface»
Subscriber

+ subscribe(s: Subscriber)
+ unsubscribe(s: Subscriber)
+ notifySubscribers()

+ mainBusinessLogic()

+ update(context)

)

s = new ConcreteSubscriber()
publisher.subscribe(s)

4
’

Concrete
Subscribers

="
-

+ update(context)

Context .
«interface»

- strategy > Strategy
+ execute(data)

+ setStrategy(strategy)
+ doSomething()

]
]
strategy.execute() H
ConcreteStrategies
| Client I- ----- =
+ execute(data)
str = new SomeStrategy() T

context.setStrategy(str)
context.doSomething()

]

other = new OtherStrategy()
context.setStrategy(other)
context.doSomething()

77 L@sS3D

Command vs. Strategy

ComC dediton Imvoker Context «interface»
copy = new CopyCommand(editor’ \'/ B

button.setCommand (copy) - DG Ko—= Strategy

- command «interface»
+ setStrategy(strategy) + execute(data)
Command :
- + setCommand(command) + doSomething() A
Client
+ executeCommand) + execute() !
. A strategy.execute() H
e ! ConcreteStrategies
< 1
' ' | Client |- ----- >
Command1 Command2
Receiver - + execute(data)
- receiver str = new SomeStrategy() T
- params context.setStrategy(str)
- R + execute() context.doSomething()
+ operation(a,b,c) + Command1(receiver, params) P,
1\ + execute() other = new OtherStrategy()
| context.setStrategy(other)

receiver.operation(params) context.doSomething()

Very similar structure, but different intentions: Command is reusable, delayed function; strategy configures
part of algorithm

17-214/514 78 Ld)sS3D

Course so far...

Creational:
1. Abstract factory 9. Decorator
2. Builder 10.Facade
3. Factory method 11.Flyweight
4. Prototype 12.Proxy
5. Singleton

Behavioral:
Structural: 9. Chain of
1. Adapter Responsibility
2. Bridge 10.Command
3. Composite 11.Interpreter

17-214/514

16.1terator
17 .Mediator
18.Memento
19.0bserver
20.State
21.Strategy
22.Template

method
23 .Visitor

70 [d)s3D

17-214/514

saving state
Builder of toration Adapter

e Bridge

adding composed .
e m
to objecis
e,
i ,
oding aversais gefining,
(o] e
changing skin
versus guts
adding
shari erpreter operations | Chain of Responsibili ‘
srrargggss po Ty
rem':;ha-'
Strategy sharing symbols
states Mediator
complex
dependency Observer

management

domnig

algori
.

ms
S
Template Method oftan uses
Prototype -
Factory Method

configure factory
dynamically implemeant using

Abstract Factory
single
instance
single
instance
Singleton

T o T T s T e Tt s

o [Bs3p

Patterns | am discussing only very briefly for
various reasons

17-214/514 g1 [9)S3n

Creational: Prototype Pattern

® |ntent — create an object by cloning another
and tweaking as necessary

® Key types — Prototype
® Java: Cloneable, but avoid (except on arrays)
e JavaScript: Builtin language feature

e Not discussing it because it’s powertully error-prone
when it’s not built-in.

17-214/514 g2 [@s3D

Behavioral: Interpreter Pattern

® |ntent — given a language, define class hierarchy for parse
tree, recursive method to interpret it

® Use case — regular expression matching

® Key types — Expression, NonterminalExpression,
TerminalExpression

® Discussing only briefly because it’s kind of a specialization
of the Composite pattern. Also, take a PL class.

17-214/514 g3 L@s3D

Mediator Pattern

® |ntent — define an object that encapsulates how a set of
objects interact, to reduce coupling.

O 0(n) couplings instead of O(n?)

® Use case — dialog box where change in one component
affects behavior of others

® Key types — Mediator, Components
® JDK — Unclear

17-214/514 ga L3s3D

Problem:

.“|! A "
| ‘}m ‘
T ‘

17-214/514 gs Ld)s3D

Mediator lllustration

17-214/514

Single responsibility at
mediator
e Coupling to single
component

Intent — define an object
that encapsulates how a set
of objects interact, to reduce
coupling.
e ((n) couplings instead
of O(n2)

Discussing it only briefly
because it’s intuitive, and
also turns into a god object
if you’re not careful.

—>1 - m: Mediator

ComponentA

+ operationA()

«interface»
Mediator

+ notify(sender)

ComponentC

—>1 - m: Mediator

JAN

+ operationC()

ConcreteMediator

\ 4

- componentA
- componentB
- componentC
- componentD

ComponentB

- m: Mediator

+ operationB()

ComponentD

- m: Mediator

+ operationD()

m.notify(this)

g

if (sender == componentA)
reactOnA()

17-214/514 https://refactoring.quru/design-patterns/mediator

+ notify(sender)
+ reactOnA()
+ reactOnB()
+ reactOnC()
+ reactOnD()

g7 L@sS3D

https://refactoring.guru/design-patterns/mediator

Problem: without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

public class Editor {
//state
public String editorContents;
public void setState(String contents) {
this.editorContents = contents;

}

Provide save and restoreToState methods
Hint: define custom type (Memento)

}
17-214/514 sg L9)S3D

Problem: without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

public class Editor {

//state

public String editorContents;

public void setState(String contents) {
this.editorContents = contents;

}

public EditorMemento save() {
return new EditorMemento(editorContents);

}

public void restoreToState(EditorMemento memento) {
editorContents = memento.getSavedState();

}

17-214/514 httos://dzone.com/articles/design-patterns-memento g9 Ld)s3D

Problem: without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

public class EditorMemento {
private final String editorState;
public EditorMemento(String state) {
editorState = state;
}
public String getSavedState() {
return editorState;
}
}

17-214/514 90 [@sS3D

Memento Pattern

Originator

- state

+ save(): Memento
+ restore(m: Memento)

Record snapshots of state

Avoid access to internal state

Allows undo

Memento

> - state

- Memento(state)
- getState()

Discussing only briefly because use immutable objects
instead when you can.

17-214/514

https://refactoring.quru/design-patterns/memento

Caretaker

= originator

- history: Memento([]

+ doSomething()
+ undo()

m = history.pop()
originator.restore(m)

m = originator.save()
history.push(m)
// originator.change()

91 [@sS3D

https://refactoring.guru/design-patterns/memento

Problem:

e It should be possible to change the behavior of a
class’s methods when its internal state changes.

o Example: TCP/IP connections go through various
states. The methods of a TCPConnection should
do different things depending on the protocol
state.

17-214/514 92 [@s3D

State Pattern Example

Without the pattern:

class Connection {

boolean isOpen = false;
void open() {

if (isOpen) throw new Inval..
../ /open connection
isOpen=true;

}

void close() {
if (!i1sOpen) throw new Inval..
../ /close connection
isOpen=false;

3
17-214/514

With the pattern:

class Connection {
private State state = new Closed();
public void setState(State s) { .. }
void open() { state.open(this); }

}

interface State {
void open(Connection c);
void close(Connection c);
}
class Open implements State {
void open(Connection c) { throw ..}
void close(Connection c) {
//..close connection
c.setState(new Closed());

}

| class Closed impl. State { .. }

State Pattern

® |ntent — allow an object to alter its behavior when

internal state changes. “Object will appear to change
class.”

® Use case — TCPConnection (which is stateful)
® Key type — State (Object delegates to state!)

® Discussing only briefly because state machines are
fairly intuitive.

17-214/514 94 [3)s3D

Visitor Pattern

® Intent — represent an operation to be performed on elements of an
object structure (e.g., a parse tree). Visitor lets you define a new
operation without modifying the type hierarchy.

® Use case — type-checking, pretty-printing, etc.

® Key types — Visitor, ConcreteVisitors, all the element types that get
visited

® Discussing only briefly because describing it well enough that you
actually could understand it would take longer than it's worth given that

it’s only ever used by program analysis/compiler types. If you’re one of
those people, go learn it.

17-214/514 o5 [d)s3D

Visitor

17-214/514

zinterfaces
Wisitor

Cli ent

+ wisitElementConcretaElemeant) | woid

ginterfacex
Elerment

Concretevisitor

+ wisitElementConcretaElemeant) | woid

+

aocepisitor @ waid

Concrete Element

+

aoceptWisitan : waid

96 Ld)S3D

The Visitable interface

//Element interface //concrete element
public class Book implements Visitable{

private double price;
private double weight;

public interface Visitable{
public void accept(Visitor visitor);

//accept the visitor

public void accept(Visitor wistor) {
visitor.visit(this);

}

public double getPrice() {
return price;

}

public double getWeight() {
return weight;

17-214/514 https://dzone.com/articles/desian-patterns-visitor 97 @)530

public interface Visitor{
public void visit(Book book);

n n [
//visit other concrete items I h e VI S ItO r I ntel I aCe
public void visit(CD cd);

public void visit(DVD dvd);

public class PostageVisitor implements Visitor {

private double totalPostageForCart;

//collect data about the book

public void wisit (Book book) {
//assume we have a calculation here related to weight and price
//free postage for a book over 10
if (book.getPrice() < 10.0) {

totalPostageForCart += book.getWeight() * 2;

//add other visitors here
public void wvisit(CD cd) {...}
public void wvisit(DVD dvd) {...}

//return the internal state
public double getTotalPostage() {
return totalPostageForCart;

)
17-214/514 o8 Ld)S3D

Driving the visitor

1 public class ShoppingCart {

2 //normal shopping cart stuff

3 private ArrayList<Visitable> items;

4 public double calculatePostage() {

5 //create a visitor

6 PostageVisitor visitor = new PostageVisitor();
7 //iterate through all items

8 for(Visitable item: items) {

9 item.accept(visitor);
10 }
11 double postage = visitor.getTotalPostage();
12 return postage;
13 }
14}

17-214/514 99 [)s3D

Visitor Pattern Discussion
Double dispatch

Add new operations (like Command pattern)
Iterate over object structure (like Iterator pattern)

Provide object-specific visit methods to avoid dynamic type
lookup

Most commonly used in context of compilers and other
operations on trees

17-214/514 100 [&)S3D

All GoF Design Patterns

Creational:
1. Abstract factory 9. Decorator
2. Builder 10.Facade
3. Factory method 11.Flyweight
4. Prototype 12.Proxy
5. Singleton

Behavioral:
Structural: 9. Chain of
1. Adapter Responsibility
2. Bridge 10.Command
3. Composite 11.Interpreter

17-214/514

16.lterator
17 .Mediator
18.Memento
19.0bserver
20.State
21.Strategy
22. Template
method
23.Visitor

101 [&S3D

Bonus: Other Design Principles

17-214/514 102 [&)S3D

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v/
Types
Unit Testing v

Inheritance & Del. v/

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and
Libraries v/, APIs vV

Module systems,
microservices v

Testing for
Robustness v

Cl v, DevOps,
Teams

103 [&)S3D

SOLID Principles

Single-responsibility principle: Every class should have only one responsibility -
- cohesion; low coupling; information expert

The Open—closed principle: "Software entities ... should be open for extension,
but closed for modification." -- encapsulation

Liskov substitution principle: Program against interface, even with subclassing

Interface segregation principle: Prefer specific small interfaces; multiple
interfaces per object okay; cohesion

Dependency inversion principle: "Depend upon abstractions, [not] concretions."
-- prefer interfaces over class types,; dynamic dispatch

17-214/514 104 L&S3D

Other Common Principles

DRY Principle: Don't Repeat Yourself

KISS Principle: Keep It Simple, Stupid
YAGNI Principle: You Aren't Gonna Need It

Principle of Least Astonishment

Boy Scout Rule: Leave the Code Cleaner than you Found it

17-214/514 105 L&)S3D

Summary

Now you know all the Gang of Four patterns
Definitions can be vague
Coverage is incomplete

But they're extremely valuable

o They gave us a vocabulary
o And a way of thinking about software

e Look for patterns as you read and write software
o GoF, non-GoF, and undiscovered

17-214/514 106 L&)S3D

	Principles of Software Construction: Objects, Design, and Concurrency��A Tour of the 23 GoF Design Patterns��Bogdan Vasilescu	Jonathan Aldrich
	Registration is soon! Consider:
	Midterm Question: Decorator
	Slide Number 4
	Today’s goal is not to cover all 23 patterns.
	Grouping Patterns
	All GoF Design Patterns
	Course so far…
	Course so far…
	Patterns we will mostly skip
	Warm Up Scenario
	All GoF Design Patterns
	(New) Problem:
	Abstract Factory
	Abstract Factory Pattern
	Abstract Factory Illustration
	Abstract factory compared to?
	Recall: Factory Method Pattern
	Factory Method Illustration
	Static Factory Method Example
	(New) Problem:
	Solution 1
	Solution 2: default no-arg constructor plus setters and getters for every attribute
	Solution 3
	Builder Pattern
	Gof4 Builder �Illustration
	Builder Code Example
	(New) Problem:
	Singleton Pattern
	Singleton Illustration
	Singleton Discussion
	Course so far…
	Course so far…
	Recall: The Adapter Design Pattern
	Recall: The Adapter �Design Pattern
	Adapter vs Strategy?
	(New) Problem: There are two types of thread schedulers, and two types of operating systems or "platforms".
	(New) Problem: we have to define a class for each permutation of these two dimensions
	Bridge Pattern: Decompose the component's interface and implementation into orthogonal class hierarchies.
	2. Bridge
	Bridge compared to…
	Course so far…
	Decorator vs Composite?
	Decorator vs Strategy?
	Design Problem
	Course so far…
	Façade Pattern
	Façade example
	Façade Illustration
	Slide Number 52
	Facade vs…
	Problem: Imagine implementing a forest of individual trees in a realtime game
	Trick: most of the fields in these objects are the same between all of those instances
	Flyweight Pattern
	Flyweight
	Flyweight Illustration
	Recall: Proxy Design Pattern
	Proxy vs Adapter?
	Proxy vs Decorator?
	Design Problem
	Design Problem
	Course so far…
	Course so far…
	Chain of Responsibility Pattern
	Slide Number 67
	Command Pattern
	Command Pattern
	Command Illustration
	Reminder: Iterator Pattern
	Reminder: Iterator Illustration
	Observer vs. Decorator?
	Observer vs. Promise?
	Design Problem
	Design Problem
	Observer vs. Strategy
	Command vs. Strategy
	Course so far…
	Slide Number 80
	Patterns I am discussing only very briefly for various reasons
	Creational: Prototype Pattern
	Behavioral: Interpreter Pattern
	Mediator Pattern
	Problem:	
	Mediator Illustration
	Slide Number 87
	Problem: without violating encapsulation, allow client of Editor to capture the object’s state and restore later
	Problem: without violating encapsulation, allow client of Editor to capture the object’s state and restore later
	Problem: without violating encapsulation, allow client of Editor to capture the object’s state and restore later
	Memento Pattern
	Problem:
	State Pattern Example
	State Pattern
	Visitor Pattern
	Visitor
	The Visitable interface
	The Visitor interface
	Driving the visitor
	Visitor Pattern Discussion
	All GoF Design Patterns
	Bonus: Other Design Principles
	Where we are
	SOLID Principles
	Other Common Principles
	Summary

