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Do you want to gain experience in SE issues above the level of class design…
● …particularly working in teams on long-running systems?

○ 17-313, Foundations of Software Engineering, Padhye.

● …but make it ML?
○ 17-400: Machine Learning and Data Science at Scale, Miller.

Are you an undergrad CS student looking to fill Logic and Languages, OR do you 
want to learn more about programming languages and compiler, OR do you really 
like Jonathan? 
● 17-363/17-663/17-819, Programming Language Pragmatics, Aldrich & Titzer

Forget all that, do you really just want to go very deep on web app development?
● 17-437/17-637, Web Application Development, Eppinger

Registration is soon! Consider:
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Midterm Question: Decorator
abstract class OrderDecorator extends CharSorter {

public OrderDecorator(              ) {

}

public boolean comesBefore(char i, char j) {

}

}

class SpacesFirstSorter extends OrderDecorator {

public SpacesFirstSorter(               ) {

}

@Override

public boolean comesBefore(char i, char j) {

}

}
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● Published 1994, widely known
● 23 Patterns; considered 

canonical, BUT:
○ not all patterns commonly used
○ not all common patterns included

● Good to where to look up when 
somebody mentions the “Bridge 
pattern”
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Instead, touch on a bunch of them, especially the ones that are still useful, 
so you recognize the words when you’re out in the Real World.

And, will practice quickly reasoning about design situations/alternatives.

Key takeaways:
● Design patterns capture a shared vocabulary; knowing/recognizing 

them makes it easier for you to design new systems; understand 
existing systems; and write systems that other people can 
understand.

● The key distinguishing feature between patterns is intent.

Today’s goal is not to cover all 23 patterns.
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Grouping Patterns
I. Creational Patterns
II. Structural Patterns
III. Behavioral Patterns
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All GoF Design Patterns

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of 

Responsibility
10.Command
11.Interpreter
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Not in the book:
● Model view controller
● Promise
● Module (JS)
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Patterns we will mostly skip

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of 

Responsibility
10.Command
11.Interpreter
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Warm Up Scenario

You are developing a mobile application for cities where users can 
report potholes and similar problems (with photos) and city crews 
can investigate, prioritize, and address reports.

Design problem 1: You want to create monthly reports. However, 
different cities want this report slightly differently, with different text 
on top and sorted in different ways. You want to vary text and 
sorting in different ways.
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All GoF Design Patterns

16.Iterator
17.Mediator
18.Memento
19.Observer
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22.Template 

method
23.Visitor

Creational:
1. Abstract factory
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3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of 

Responsibility
10.Command
11.Interpreter
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(New) Problem:
Imagine you want to write code that supports multiple platforms (e.g., Mac 
and Windows)

● We want code to be platform independent

Suppose we want to create a Window with setTile(String text) and 
repaint()

How can we write code that will create the correct  Window 
for the correct platform, without using conditionals?
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Abstract Factory
● Intent – allow creation of families of related objects 

independent of implementation
● Use case – look-and-feel in a GUI toolkit

○ Each L&F has its own windows, scrollbars, etc.

● Key types – Factory with methods to create each family 
member, Products

● Not common in JDK / JavaScript 
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Abstract Factory Pattern
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Abstract Factory Illustration

Client
Window

PMWindow MotifWindow

PMScrollBar MotifScrollBar

ScrollBar

WidgetFactory
CreateWindow()
CreateScrollBar()

MotifWidgetFactory
CreateWindow()
CreateScrollBar()

PMWidgetFactory
CreateWindow()
CreateScrollBar()
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Abstract factory compared to?

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template 

method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of 

Responsibility
10.Command
11.Interpreter
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Recall: Factory Method Pattern
● Intent – abstract creational method that lets subclasses decide which 

class to instantiate
● Use case – creating documents in a framework
● Key types – Creator, which contains abstract method to create an 

instance
● Java: Iterable.iterator()
● Related Static Factory pattern is very common

○ Technically not a GoF pattern, but close enough, e.g. Integer.valueOf(int)
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Factory Method Illustration
public interface Iterable<E> {

public abstract Iterator<E> iterator();
}

public class ArrayList<E> implements List<E> {
public Iterator<E> iterator() { ... }
...

}

public class HashSet<E> implements Set<E> {
public Iterator<E> iterator() { ... }
...

}
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Static Factory Method Example
public DatabaseConnection {

private DatabaseConnection(String address) { … }
public static DatabaseConnection create(String address) {

//optional caching or checking…
return new DatabaseConnection(address);

}
}

c = new DatabaseConnection(“localhost”);
c = DatabaseConnection.create(“localhost”);
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(New) Problem:
How to handle all combinations of fields when constructing?

Related problems:
● How can a class (the same construction process) create different 

representations of a complex object?
● How can a class that includes creating a complex object be simplified?
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Solution 1

https://jlordiales.wordpress.com/2012/12/13/the-builder-pattern-in-practice/

Bad (code becomes harder to read and maintain)
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Solution 2: default no-arg constructor plus setters and getters 
for every attribute 

Bad (potentially inconsistent state, mutable)
https://jlordiales.wordpress.com/2012/12/13/the-builder-pattern-in-practice/
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Solution 3

https://jlordiales.wordpress.com/2012/12/13/the-builder-pattern-in-practice/
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Builder Pattern
● Intent – separate construction of complex object from 

representation so same creation process can create 
different representations

● Use case – converting rich text to various formats
● Types – Builder, ConcreteBuilders, Director, Products
● StringBuilder (Java), DirectoryBuilder (HW2)
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Gof4 Builder 
Illustration

https://refactoring.guru/design-patterns/builder

● Emulates named parameters in 
languages that don’t support them

● Emulates 2n constructors or 
factories with n builder methods, by 
allowing them to be combined freely

● Cost is an intermediate (Builder) 
object
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Builder Code Example
NutritionFacts twoLiterDietCoke =

new NutritionFacts.Builder("Diet Coke", 240, 8).sodium(1).build();

public class NutritioanFacts {
public static class Builder {

public Builder(String name, int servingSize,
int servingsPerContainer) { ... }

public Builder totalFat(int val) { totalFat = val; }
public Builder saturatedFat(int val) { satFat = val; }
public Builder transFat(int val) { transFat = val; }
public Builder cholesterol(int val) { cholesterol = val; }
... // 15 more setters
public NutritionFacts build() {

return new NutritionFacts(this);
}

}
private NutritionFacts(Builder builder) { ... }

}
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● Ensure there is only a single instance of a 
class (e.g., java.lang.Runtime)

● Provide global access to that class

(New) Problem:
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Singleton Pattern
● Intent – ensuring a class has only one instance
● Use case – GoF say print queue, file system, company in 

an accounting system
○ Compelling uses are rare but they do exist

● Key types – Singleton
● Java: java.lang.Runtime.getRuntime(), 

java.util.Collections.emptyList()
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Singleton Illustration
public class Elvis {

private static final Elvis ELVIS = new Elvis();
public static Elvis getInstance() { return ELVIS; }
private Elvis() { }
...

}

const elvis = { … }
function getElvis() {

export { getElvis }



3117-214/514

Singleton Discussion
Singleton = global variable

No flexibility for change or extension

Tends to be overused
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Course so far…
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12.Proxy
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9. Chain of 

Responsibility
10.Command
11.Interpreter
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Recall: The Adapter Design Pattern

https://refactoring.guru/design-patterns/adapter
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Recall: The Adapter
Design Pattern

Applicability
● You want to use an existing class, 

and its interface does not match the 
one you need

● You want to create a reusable class 
that cooperates with unrelated 
classes that don’t necessarily have 
compatible interfaces

● You need to use several 
subclasses, but it’s impractical to 
adapt their interface by subclassing 
each one

Consequences
• Exposes the functionality of an object in 

another form
• Unifies the interfaces of multiple 

incompatible adaptee objects
• Lets a single adapter work with multiple 

adaptees in a hierarchy
• -> Low coupling, high cohesion
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Adapter vs Strategy?
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(New) Problem: There are two types of thread schedulers, 
and two types of operating systems or "platforms".

image source: https://sourcemaking.com
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(New) Problem: we have to define a class for each 
permutation of these two dimensions

image source: https://sourcemaking.com

How would you redesign this?
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Bridge Pattern: Decompose the component's interface and 
implementation into orthogonal class hierarchies.

image source: https://sourcemaking.com
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2. Bridge
● Intent – decouple an abstraction from its 

implementation so they can vary independently
● Use case – portable windowing toolkit
● Key types – Abstraction, Implementor 
● Java: JDBC, Java Cryptography Extension (JCE), 

Java Naming & Directory Interface (JNDI)
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Bridge compared to…

Adapter?Strategy?
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Course so far…
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Decorator vs Composite?
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Decorator vs Strategy?
interface GameLogic {

isValidMove(w, x, y)

move(w, x, y) 

}

class BasicGameLogic

implements GameLogic { … }

class AbstractGodCardDecorator

implements GameLogic { … }

class PanDecorator extends

AbstractGodCardDecorator

implements GameLogic { … }

interface GameLogic {

isValidMove(w, x, y)

move(w, x, y) 

}

class BasicGameLogic

implements GameLogic {

constructor(board) { … }

isValidMove(w, x, y) { … }

move(w, x, y) { … } 

}

class PanDecorator extends

BasicGameLogic {

move(w, x, y} { /* 

super.move(w, x, y) + checkWinner */ } 

}
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Design Problem
Context: You are developing a mobile application for cities where 
users can report potholes and similar problems (with photos) and 
city crews can investigate, prioritize, and address reports.

Problem: You want to group problems that are related into a 
problem group with a new name, and those might be grouped 
again, but still count them directly. Those groups should still show 
up in reports and all scheduling activities.
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Façade Pattern
● Intent – provide a simple unified interface to a set of 

interfaces in a subsystem
○ GoF allow for variants where the complex underpinnings are 

exposed and hidden

● Use case – any complex system; GoF use compiler
● Key types – Façade (the simple unified interface)
● JDK – java.util.concurrent.Executors
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Façade example
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Façade Illustration
Façade

√√

√

√

√

√ √

Subsystem classes
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class SantoriniController {

newGame() { … }

isValidMove(w, x, y) { … }

move(w, x, y) { … }

getWinner() { … }

}
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Facade vs…
…Controller Heuristic

Same idea

Facade for subsystem, controller for use case

…Singleton

Facade sometimes a global variable

Typically little design for change/extension

…Adapter?
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Problem: Imagine implementing a forest of individual trees 
in a realtime game

Source: http://gameprogrammingpatterns.com/flyweight.html
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Trick: most of the fields in these objects are the same 
between all of those instances

Source: http://gameprogrammingpatterns.com/flyweight.html
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Flyweight Pattern
● Intent – use sharing to support large numbers

of fine-grained objects efficiently
● Use case – characters in a document
● Key types – Flyweight (instance-controlled!)

○ Some state can be extrinsic to reduce number of instances
● Java: String literals (JVM feature), Integer

● “Hash Consing” in functional programming



5717-214/514

Flyweight
Key idea: Avoid 
copies of 
structurally equal 
objects, reuse 
object
Requires 
immutable objects 
and factory with 
caching

https://refactoring.guru/design-patterns/flyweight
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Flyweight Illustration
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Recall: Proxy Design Pattern

● Local representative for remote object
○ Create expensive obj on-demand
○ Control access to an object

● Hides extra “work” from client
○ Add extra error handling, caching
○ Uses indirection

https://refactoring.guru/design-patterns/proxy
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Proxy vs Adapter?
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Proxy vs Decorator?
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Design Problem
You are developing a mobile application for cities where users can 
report potholes and similar problems (with photos) and city crews 
can investigate, prioritize, and address reports.

Design problem 4: Some problems point to large pictures stored in 
another database and you do not want to keep them in memory, 
but load them only when needed.
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Design Problem
You are developing a mobile application for cities where users can 
report potholes and similar problems (with photos) and city crews 
can investigate, prioritize, and address reports.

Design problem 5: The county has a different system that records 
potholes in a different format. You want to include them in your 
reports regardless.



6417-214/514

Course so far…

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template 

method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of 

Responsibility
10.Command
11.Interpreter



6517-214/514

Course so far…

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template 

method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of 

Responsibility
10.Command
11.Interpreter



6617-214/514

Chain of Responsibility Pattern
● Intent – avoid coupling sender to receiver by passing 

request along until someone handles it
● Use case – context-sensitive help facility
● Key types – RequestHandler
● JDK – ClassLoader, Properties
● Exception handling could be considered a form of Chain of 

Responsibility pattern
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https://refactoring.guru/design-patterns/chain-of-responsibility
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Command Pattern
● Intent – encapsulate a request as an object, letting you parameterize 

one action with another, queue or log requests, etc.
● Use case – menu tree
● Key type – Command (Runnable)
● JDK – Common! Executor framework, etc. -- see higher order function
● Commands may:

● be run repeatedly
● take an argument
● return a value
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Command Pattern

https://refactoring.guru/design-patterns/command

https://refactoring.guru/design-patterns/command
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Command Illustration
class ClickAction {

constructor(name) { this.name = name }

execute() { /* … update based on click event */ }

}

let c = new ClickAction("Restart Game")

getElementById("menu").addEventListener("click", c.execute)

getElementById("btn").addEventListener("click", c.execute)

setTimeout(c.execute, 2000)

Object (or function) represents an action, execution deferred, arguments possibly configured early. 
Can be reused in multiple places. Can be queued, logged, ...
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● Intent – provide a way to access elements of a 
collection without exposing representation

● Use case – collections
● Key types – Iterable, Iterator

○ But GoF discuss internal iteration, too

● Java and JavaScript: collections, for-each statement ..

Reminder: Iterator Pattern
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Reminder: Iterator Illustration
public interface Iterable<E> {

public abstract Iterator<E> iterator();
}
public class ArrayList<E> implements List<E> {

public Iterator<E> iterator() { ... }
...

}
public class HashSet<E> implements Set<E> {

public Iterator<E> iterator() { ... }
...

}
Collection<String> c = ...;
for (String s : c) // Creates an Iterator appropriate to c

System.out.println(s);
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Observer vs. Decorator?
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Observer vs. Promise?
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Design Problem
You are developing a mobile application for cities where users can 
report potholes and similar problems (with photos) and city crews 
can investigate, prioritize, and address reports.

Design problem 6: Every time a report is resolved, one of multiple 
actions should be taken (email, text message, …). The action is 
selected by the person creating the report.
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Design Problem
You are developing a mobile application for cities where users can 
report potholes and similar problems (with photos) and city crews 
can investigate, prioritize, and address reports.

Design problem 7: Every time a report is resolved, multiple follow-
up actions should be performed. Results should be added to a 
database, an email should be sent, a supervisor should be 
informed, etc. More actions might be added later.
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Observer vs. Strategy
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Command vs. Strategy

Very similar structure, but different intentions: Command is reusable, delayed function; strategy configures 
part of algorithm



7917-214/514
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Patterns I am discussing only very briefly for 
various reasons 
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Creational: Prototype Pattern
● Intent – create an object by cloning another

and tweaking as necessary
● Key types – Prototype
● Java: Cloneable, but avoid (except on arrays)
● JavaScript: Builtin language feature
● Not discussing it because it’s powerfully error-prone 

when it’s not built-in.
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Behavioral: Interpreter Pattern
● Intent – given a language, define class hierarchy for parse 

tree, recursive method to interpret it
● Use case – regular expression matching
● Key types – Expression, NonterminalExpression, 

TerminalExpression
● Discussing only briefly because it’s kind of a specialization 

of the Composite pattern.  Also, take a PL class.
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Mediator Pattern
● Intent – define an object that encapsulates how a set of 

objects interact, to reduce coupling.
○ 𝓞𝓞(n) couplings instead of 𝓞𝓞(n2)

● Use case – dialog box where change in one component 
affects behavior of others

● Key types – Mediator, Components
● JDK – Unclear
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Problem:
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Mediator Illustration
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Single responsibility at 
mediator
● Coupling to single 

component

Intent – define an object 
that encapsulates how a set 
of objects interact, to reduce 
coupling.
● 𝓞𝓞(n) couplings instead 

of 𝓞𝓞(n2)

Discussing it only briefly 
because it’s intuitive, and 
also turns into a god object 
if you’re not careful.

https://refactoring.guru/design-patterns/mediator

https://refactoring.guru/design-patterns/mediator
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Problem: without violating encapsulation, allow client of 
Editor to capture the object’s state and restore later

Provide save and restoreToState methods
Hint: define custom type (Memento)



8917-214/514 https://dzone.com/articles/design-patterns-memento

Problem: without violating encapsulation, allow client of 
Editor to capture the object’s state and restore later
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Problem: without violating encapsulation, allow client of 
Editor to capture the object’s state and restore later
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Memento Pattern

Record snapshots of state

Avoid access to internal state

Allows undo

Discussing only briefly because use immutable objects 
instead when you can.

https://refactoring.guru/design-patterns/memento

https://refactoring.guru/design-patterns/memento
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Problem:
● It should be possible to change the behavior of a

class’s methods when its internal state changes.
○Example: TCP/IP connections go through various 

states.  The methods of a TCPConnection should 
do different things depending on the protocol 
state.



9317-214/514

State Pattern Example

class Connection {

boolean isOpen = false;
void open() {

if (isOpen) throw new Inval…

…//open connection

isOpen=true;

}

void close() {

if (!isOpen) throw new Inval…

…//close connection

isOpen=false;

}

}

class Connection {

private State state = new Closed();

public void setState(State s) { … }

void open() { state.open(this); }

…

}

interface State {

void open(Connection c);

void close(Connection c);

}

class Open implements State {

void open(Connection c) { throw …}

void close(Connection c) {

//…close connection

c.setState(new Closed());

}

}

class Closed impl. State { … }

Without the pattern:

With the pattern:
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State Pattern
● Intent – allow an object to alter its behavior when 

internal state changes. “Object will appear to change 
class.”

● Use case – TCPConnection (which is stateful)
● Key type – State (Object delegates to state!)
● Discussing only briefly because state machines are 

fairly intuitive.



9517-214/514

Visitor Pattern
● Intent – represent an operation to be performed on elements of an 

object structure (e.g., a parse tree). Visitor lets you define a new 
operation without modifying the type hierarchy.

● Use case – type-checking, pretty-printing, etc.
● Key types – Visitor, ConcreteVisitors, all the element types that get 

visited
● Discussing only briefly because describing it well enough that you 

actually could understand it would take longer than it’s worth given that 
it’s only ever used by program analysis/compiler types.  If you’re one of 
those people, go learn it.
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Visitor
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The Visitable interface

https://dzone.com/articles/design-patterns-visitor
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The Visitor interface
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Driving the visitor
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Visitor Pattern Discussion
Double dispatch
Add new operations (like Command pattern)
Iterate over object structure (like Iterator pattern)
Provide object-specific visit methods to avoid dynamic type 
lookup
Most commonly used in context of compilers and other 
operations on trees
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All GoF Design Patterns

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template 

method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of 

Responsibility
10.Command
11.Interpreter
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Bonus: Other Design Principles
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Where we are

Subtype 
Polymorphism ✓

Information Hiding, 
Contracts ✓

Immutability ✓

Types

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓
Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and 
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for 
Robustness ✓

CI ✓, DevOps, 
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems
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SOLID Principles
Single-responsibility principle: Every class should have only one responsibility -
- cohesion; low coupling; information expert

The Open–closed principle: "Software entities ... should be open for extension, 
but closed for modification." -- encapsulation

Liskov substitution principle: Program against interface, even with subclassing

Interface segregation principle: Prefer specific small interfaces; multiple 
interfaces per object okay; cohesion

Dependency inversion principle: "Depend upon abstractions, [not] concretions." 
-- prefer interfaces over class types; dynamic dispatch
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Other Common Principles
DRY Principle: Don't Repeat Yourself

KISS Principle: Keep It Simple, Stupid

YAGNI Principle: You Aren't Gonna Need It

Principle of Least Astonishment

Boy Scout Rule: Leave the Code Cleaner than you Found it
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Summary
● Now you know all the Gang of Four patterns
● Definitions can be vague
● Coverage is incomplete
● But they’re extremely valuable

○ They gave us a vocabulary
○ And a way of thinking about software

● Look for patterns as you read and write software
○ GoF, non-GoF, and undiscovered
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