
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

A Tour of the 23 GoF Design Patterns

Bogdan Vasilescu Jonathan Aldrich

217-214/514

Do you want to gain experience in SE issues above the level of class design…
● …particularly working in teams on long-running systems?

○ 17-313, Foundations of Software Engineering, Padhye.

● …but make it ML?
○ 17-400: Machine Learning and Data Science at Scale, Miller.

Are you an undergrad CS student looking to fill Logic and Languages, OR do you
want to learn more about programming languages and compiler, OR do you really
like Jonathan?
● 17-363/17-663/17-819, Programming Language Pragmatics, Aldrich & Titzer

Forget all that, do you really just want to go very deep on web app development?
● 17-437/17-637, Web Application Development, Eppinger

Registration is soon! Consider:

317-214/514

Midterm Question: Decorator
abstract class OrderDecorator extends CharSorter {

public OrderDecorator() {

}

public boolean comesBefore(char i, char j) {

}

}

class SpacesFirstSorter extends OrderDecorator {

public SpacesFirstSorter() {

}

@Override

public boolean comesBefore(char i, char j) {

}

}

417-214/514

● Published 1994, widely known
● 23 Patterns; considered

canonical, BUT:
○ not all patterns commonly used
○ not all common patterns included

● Good to where to look up when
somebody mentions the “Bridge
pattern”

517-214/514

Instead, touch on a bunch of them, especially the ones that are still useful,
so you recognize the words when you’re out in the Real World.

And, will practice quickly reasoning about design situations/alternatives.

Key takeaways:
● Design patterns capture a shared vocabulary; knowing/recognizing

them makes it easier for you to design new systems; understand
existing systems; and write systems that other people can
understand.

● The key distinguishing feature between patterns is intent.

Today’s goal is not to cover all 23 patterns.

617-214/514

Grouping Patterns
I. Creational Patterns
II. Structural Patterns
III. Behavioral Patterns

717-214/514

All GoF Design Patterns

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of

Responsibility
10.Command
11.Interpreter

817-214/514

Course so far…

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of

Responsibility
10.Command
11.Interpreter

917-214/514

Course so far…

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of

Responsibility
10.Command
11.Interpreter

Not in the book:
● Model view controller
● Promise
● Module (JS)

1017-214/514

Patterns we will mostly skip

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of

Responsibility
10.Command
11.Interpreter

1117-214/514

Warm Up Scenario

You are developing a mobile application for cities where users can
report potholes and similar problems (with photos) and city crews
can investigate, prioritize, and address reports.

Design problem 1: You want to create monthly reports. However,
different cities want this report slightly differently, with different text
on top and sorted in different ways. You want to vary text and
sorting in different ways.

1217-214/514

All GoF Design Patterns

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template

method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of

Responsibility
10.Command
11.Interpreter

1317-214/514

(New) Problem:
Imagine you want to write code that supports multiple platforms (e.g., Mac
and Windows)

● We want code to be platform independent

Suppose we want to create a Window with setTile(String text) and
repaint()

How can we write code that will create the correct Window
for the correct platform, without using conditionals?

1417-214/514

Abstract Factory
● Intent – allow creation of families of related objects

independent of implementation
● Use case – look-and-feel in a GUI toolkit

○ Each L&F has its own windows, scrollbars, etc.

● Key types – Factory with methods to create each family
member, Products

● Not common in JDK / JavaScript

1517-214/514

Abstract Factory Pattern

1617-214/514

Abstract Factory Illustration

Client
Window

PMWindow MotifWindow

PMScrollBar MotifScrollBar

ScrollBar

WidgetFactory
CreateWindow()
CreateScrollBar()

MotifWidgetFactory
CreateWindow()
CreateScrollBar()

PMWidgetFactory
CreateWindow()
CreateScrollBar()

1717-214/514

Abstract factory compared to?

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template

method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of

Responsibility
10.Command
11.Interpreter

1817-214/514

Recall: Factory Method Pattern
● Intent – abstract creational method that lets subclasses decide which

class to instantiate
● Use case – creating documents in a framework
● Key types – Creator, which contains abstract method to create an

instance
● Java: Iterable.iterator()
● Related Static Factory pattern is very common

○ Technically not a GoF pattern, but close enough, e.g. Integer.valueOf(int)

1917-214/514

Factory Method Illustration
public interface Iterable<E> {

public abstract Iterator<E> iterator();
}

public class ArrayList<E> implements List<E> {
public Iterator<E> iterator() { ... }
...

}

public class HashSet<E> implements Set<E> {
public Iterator<E> iterator() { ... }
...

}

2017-214/514

Static Factory Method Example
public DatabaseConnection {

private DatabaseConnection(String address) { … }
public static DatabaseConnection create(String address) {

//optional caching or checking…
return new DatabaseConnection(address);

}
}

c = new DatabaseConnection(“localhost”);
c = DatabaseConnection.create(“localhost”);

2117-214/514

(New) Problem:
How to handle all combinations of fields when constructing?

Related problems:
● How can a class (the same construction process) create different

representations of a complex object?
● How can a class that includes creating a complex object be simplified?

2217-214/514

Solution 1

https://jlordiales.wordpress.com/2012/12/13/the-builder-pattern-in-practice/

Bad (code becomes harder to read and maintain)

2317-214/514

Solution 2: default no-arg constructor plus setters and getters
for every attribute

Bad (potentially inconsistent state, mutable)
https://jlordiales.wordpress.com/2012/12/13/the-builder-pattern-in-practice/

2417-214/514

Solution 3

https://jlordiales.wordpress.com/2012/12/13/the-builder-pattern-in-practice/

2517-214/514

Builder Pattern
● Intent – separate construction of complex object from

representation so same creation process can create
different representations

● Use case – converting rich text to various formats
● Types – Builder, ConcreteBuilders, Director, Products
● StringBuilder (Java), DirectoryBuilder (HW2)

2617-214/514

Gof4 Builder
Illustration

https://refactoring.guru/design-patterns/builder

● Emulates named parameters in
languages that don’t support them

● Emulates 2n constructors or
factories with n builder methods, by
allowing them to be combined freely

● Cost is an intermediate (Builder)
object

2717-214/514

Builder Code Example
NutritionFacts twoLiterDietCoke =

new NutritionFacts.Builder("Diet Coke", 240, 8).sodium(1).build();

public class NutritioanFacts {
public static class Builder {

public Builder(String name, int servingSize,
int servingsPerContainer) { ... }

public Builder totalFat(int val) { totalFat = val; }
public Builder saturatedFat(int val) { satFat = val; }
public Builder transFat(int val) { transFat = val; }
public Builder cholesterol(int val) { cholesterol = val; }
... // 15 more setters
public NutritionFacts build() {

return new NutritionFacts(this);
}

}
private NutritionFacts(Builder builder) { ... }

}

2817-214/514

● Ensure there is only a single instance of a
class (e.g., java.lang.Runtime)

● Provide global access to that class

(New) Problem:

2917-214/514

Singleton Pattern
● Intent – ensuring a class has only one instance
● Use case – GoF say print queue, file system, company in

an accounting system
○ Compelling uses are rare but they do exist

● Key types – Singleton
● Java: java.lang.Runtime.getRuntime(),

java.util.Collections.emptyList()

3017-214/514

Singleton Illustration
public class Elvis {

private static final Elvis ELVIS = new Elvis();
public static Elvis getInstance() { return ELVIS; }
private Elvis() { }
...

}

const elvis = { … }
function getElvis() {

export { getElvis }

3117-214/514

Singleton Discussion
Singleton = global variable

No flexibility for change or extension

Tends to be overused

3217-214/514

Course so far…

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template

method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of

Responsibility
10.Command
11.Interpreter

3317-214/514

Course so far…

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template

method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of

Responsibility
10.Command
11.Interpreter

3417-214/514

Recall: The Adapter Design Pattern

https://refactoring.guru/design-patterns/adapter

3517-214/514

Recall: The Adapter
Design Pattern

Applicability
● You want to use an existing class,

and its interface does not match the
one you need

● You want to create a reusable class
that cooperates with unrelated
classes that don’t necessarily have
compatible interfaces

● You need to use several
subclasses, but it’s impractical to
adapt their interface by subclassing
each one

Consequences
• Exposes the functionality of an object in

another form
• Unifies the interfaces of multiple

incompatible adaptee objects
• Lets a single adapter work with multiple

adaptees in a hierarchy
• -> Low coupling, high cohesion

3617-214/514

Adapter vs Strategy?

3717-214/514

(New) Problem: There are two types of thread schedulers,
and two types of operating systems or "platforms".

image source: https://sourcemaking.com

3817-214/514

(New) Problem: we have to define a class for each
permutation of these two dimensions

image source: https://sourcemaking.com

How would you redesign this?

3917-214/514

Bridge Pattern: Decompose the component's interface and
implementation into orthogonal class hierarchies.

image source: https://sourcemaking.com

4017-214/514

2. Bridge
● Intent – decouple an abstraction from its

implementation so they can vary independently
● Use case – portable windowing toolkit
● Key types – Abstraction, Implementor
● Java: JDBC, Java Cryptography Extension (JCE),

Java Naming & Directory Interface (JNDI)

4117-214/514

Bridge compared to…

Adapter?Strategy?

4217-214/514

Course so far…

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template

method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of

Responsibility
10.Command
11.Interpreter

4317-214/514

Decorator vs Composite?

4517-214/514

Decorator vs Strategy?
interface GameLogic {

isValidMove(w, x, y)

move(w, x, y)

}

class BasicGameLogic

implements GameLogic { … }

class AbstractGodCardDecorator

implements GameLogic { … }

class PanDecorator extends

AbstractGodCardDecorator

implements GameLogic { … }

interface GameLogic {

isValidMove(w, x, y)

move(w, x, y)

}

class BasicGameLogic

implements GameLogic {

constructor(board) { … }

isValidMove(w, x, y) { … }

move(w, x, y) { … }

}

class PanDecorator extends

BasicGameLogic {

move(w, x, y} { /*

super.move(w, x, y) + checkWinner */ }

}

4717-214/514

Design Problem
Context: You are developing a mobile application for cities where
users can report potholes and similar problems (with photos) and
city crews can investigate, prioritize, and address reports.

Problem: You want to group problems that are related into a
problem group with a new name, and those might be grouped
again, but still count them directly. Those groups should still show
up in reports and all scheduling activities.

4817-214/514

Course so far…

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template

method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of

Responsibility
10.Command
11.Interpreter

4917-214/514

Façade Pattern
● Intent – provide a simple unified interface to a set of

interfaces in a subsystem
○ GoF allow for variants where the complex underpinnings are

exposed and hidden

● Use case – any complex system; GoF use compiler
● Key types – Façade (the simple unified interface)
● JDK – java.util.concurrent.Executors

5017-214/514

Façade example

5117-214/514

Façade Illustration
Façade

√√

√

√

√

√ √

Subsystem classes

5217-214/514

class SantoriniController {

newGame() { … }

isValidMove(w, x, y) { … }

move(w, x, y) { … }

getWinner() { … }

}

5317-214/514

Facade vs…
…Controller Heuristic

Same idea

Facade for subsystem, controller for use case

…Singleton

Facade sometimes a global variable

Typically little design for change/extension

…Adapter?

5417-214/514

Problem: Imagine implementing a forest of individual trees
in a realtime game

Source: http://gameprogrammingpatterns.com/flyweight.html

5517-214/514

Trick: most of the fields in these objects are the same
between all of those instances

Source: http://gameprogrammingpatterns.com/flyweight.html

5617-214/514

Flyweight Pattern
● Intent – use sharing to support large numbers

of fine-grained objects efficiently
● Use case – characters in a document
● Key types – Flyweight (instance-controlled!)

○ Some state can be extrinsic to reduce number of instances
● Java: String literals (JVM feature), Integer

● “Hash Consing” in functional programming

5717-214/514

Flyweight
Key idea: Avoid
copies of
structurally equal
objects, reuse
object
Requires
immutable objects
and factory with
caching

https://refactoring.guru/design-patterns/flyweight

5817-214/514

Flyweight Illustration

5917-214/514

Recall: Proxy Design Pattern

● Local representative for remote object
○ Create expensive obj on-demand
○ Control access to an object

● Hides extra “work” from client
○ Add extra error handling, caching
○ Uses indirection

https://refactoring.guru/design-patterns/proxy

6017-214/514

Proxy vs Adapter?

6117-214/514

Proxy vs Decorator?

6217-214/514

Design Problem
You are developing a mobile application for cities where users can
report potholes and similar problems (with photos) and city crews
can investigate, prioritize, and address reports.

Design problem 4: Some problems point to large pictures stored in
another database and you do not want to keep them in memory,
but load them only when needed.

6317-214/514

Design Problem
You are developing a mobile application for cities where users can
report potholes and similar problems (with photos) and city crews
can investigate, prioritize, and address reports.

Design problem 5: The county has a different system that records
potholes in a different format. You want to include them in your
reports regardless.

6417-214/514

Course so far…

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template

method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of

Responsibility
10.Command
11.Interpreter

6517-214/514

Course so far…

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template

method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of

Responsibility
10.Command
11.Interpreter

6617-214/514

Chain of Responsibility Pattern
● Intent – avoid coupling sender to receiver by passing

request along until someone handles it
● Use case – context-sensitive help facility
● Key types – RequestHandler
● JDK – ClassLoader, Properties
● Exception handling could be considered a form of Chain of

Responsibility pattern

6717-214/514 https://refactoring.guru/design-patterns/chain-of-responsibility

https://refactoring.guru/design-patterns/chain-of-responsibility

6817-214/514

Command Pattern
● Intent – encapsulate a request as an object, letting you parameterize

one action with another, queue or log requests, etc.
● Use case – menu tree
● Key type – Command (Runnable)
● JDK – Common! Executor framework, etc. -- see higher order function
● Commands may:

● be run repeatedly
● take an argument
● return a value

6917-214/514

Command Pattern

https://refactoring.guru/design-patterns/command

https://refactoring.guru/design-patterns/command

7017-214/514

Command Illustration
class ClickAction {

constructor(name) { this.name = name }

execute() { /* … update based on click event */ }

}

let c = new ClickAction("Restart Game")

getElementById("menu").addEventListener("click", c.execute)

getElementById("btn").addEventListener("click", c.execute)

setTimeout(c.execute, 2000)

Object (or function) represents an action, execution deferred, arguments possibly configured early.
Can be reused in multiple places. Can be queued, logged, ...

7117-214/514

● Intent – provide a way to access elements of a
collection without exposing representation

● Use case – collections
● Key types – Iterable, Iterator

○ But GoF discuss internal iteration, too

● Java and JavaScript: collections, for-each statement ..

Reminder: Iterator Pattern

7217-214/514

Reminder: Iterator Illustration
public interface Iterable<E> {

public abstract Iterator<E> iterator();
}
public class ArrayList<E> implements List<E> {

public Iterator<E> iterator() { ... }
...

}
public class HashSet<E> implements Set<E> {

public Iterator<E> iterator() { ... }
...

}
Collection<String> c = ...;
for (String s : c) // Creates an Iterator appropriate to c

System.out.println(s);

7317-214/514

Observer vs. Decorator?

7417-214/514

Observer vs. Promise?

7517-214/514

Design Problem
You are developing a mobile application for cities where users can
report potholes and similar problems (with photos) and city crews
can investigate, prioritize, and address reports.

Design problem 6: Every time a report is resolved, one of multiple
actions should be taken (email, text message, …). The action is
selected by the person creating the report.

7617-214/514

Design Problem
You are developing a mobile application for cities where users can
report potholes and similar problems (with photos) and city crews
can investigate, prioritize, and address reports.

Design problem 7: Every time a report is resolved, multiple follow-
up actions should be performed. Results should be added to a
database, an email should be sent, a supervisor should be
informed, etc. More actions might be added later.

7717-214/514

Observer vs. Strategy

7817-214/514

Command vs. Strategy

Very similar structure, but different intentions: Command is reusable, delayed function; strategy configures
part of algorithm

7917-214/514

Course so far…

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template

method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of

Responsibility
10.Command
11.Interpreter

8017-214/514

8117-214/514

Patterns I am discussing only very briefly for
various reasons

8217-214/514

Creational: Prototype Pattern
● Intent – create an object by cloning another

and tweaking as necessary
● Key types – Prototype
● Java: Cloneable, but avoid (except on arrays)
● JavaScript: Builtin language feature
● Not discussing it because it’s powerfully error-prone

when it’s not built-in.

8317-214/514

Behavioral: Interpreter Pattern
● Intent – given a language, define class hierarchy for parse

tree, recursive method to interpret it
● Use case – regular expression matching
● Key types – Expression, NonterminalExpression,

TerminalExpression
● Discussing only briefly because it’s kind of a specialization

of the Composite pattern. Also, take a PL class.

8417-214/514

Mediator Pattern
● Intent – define an object that encapsulates how a set of

objects interact, to reduce coupling.
○ 𝓞𝓞(n) couplings instead of 𝓞𝓞(n2)

● Use case – dialog box where change in one component
affects behavior of others

● Key types – Mediator, Components
● JDK – Unclear

8517-214/514

Problem:

8617-214/514

Mediator Illustration

8717-214/514

Single responsibility at
mediator
● Coupling to single

component

Intent – define an object
that encapsulates how a set
of objects interact, to reduce
coupling.
● 𝓞𝓞(n) couplings instead

of 𝓞𝓞(n2)

Discussing it only briefly
because it’s intuitive, and
also turns into a god object
if you’re not careful.

https://refactoring.guru/design-patterns/mediator

https://refactoring.guru/design-patterns/mediator

8817-214/514

Problem: without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

Provide save and restoreToState methods
Hint: define custom type (Memento)

8917-214/514 https://dzone.com/articles/design-patterns-memento

Problem: without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

9017-214/514

Problem: without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

9117-214/514

Memento Pattern

Record snapshots of state

Avoid access to internal state

Allows undo

Discussing only briefly because use immutable objects
instead when you can.

https://refactoring.guru/design-patterns/memento

https://refactoring.guru/design-patterns/memento

9217-214/514

Problem:
● It should be possible to change the behavior of a

class’s methods when its internal state changes.
○Example: TCP/IP connections go through various

states. The methods of a TCPConnection should
do different things depending on the protocol
state.

9317-214/514

State Pattern Example

class Connection {

boolean isOpen = false;
void open() {

if (isOpen) throw new Inval…

…//open connection

isOpen=true;

}

void close() {

if (!isOpen) throw new Inval…

…//close connection

isOpen=false;

}

}

class Connection {

private State state = new Closed();

public void setState(State s) { … }

void open() { state.open(this); }

…

}

interface State {

void open(Connection c);

void close(Connection c);

}

class Open implements State {

void open(Connection c) { throw …}

void close(Connection c) {

//…close connection

c.setState(new Closed());

}

}

class Closed impl. State { … }

Without the pattern:

With the pattern:

9417-214/514

State Pattern
● Intent – allow an object to alter its behavior when

internal state changes. “Object will appear to change
class.”

● Use case – TCPConnection (which is stateful)
● Key type – State (Object delegates to state!)
● Discussing only briefly because state machines are

fairly intuitive.

9517-214/514

Visitor Pattern
● Intent – represent an operation to be performed on elements of an

object structure (e.g., a parse tree). Visitor lets you define a new
operation without modifying the type hierarchy.

● Use case – type-checking, pretty-printing, etc.
● Key types – Visitor, ConcreteVisitors, all the element types that get

visited
● Discussing only briefly because describing it well enough that you

actually could understand it would take longer than it’s worth given that
it’s only ever used by program analysis/compiler types. If you’re one of
those people, go learn it.

9617-214/514

Visitor

9717-214/514

The Visitable interface

https://dzone.com/articles/design-patterns-visitor

9817-214/514

The Visitor interface

9917-214/514

Driving the visitor

10017-214/514

Visitor Pattern Discussion
Double dispatch
Add new operations (like Command pattern)
Iterate over object structure (like Iterator pattern)
Provide object-specific visit methods to avoid dynamic type
lookup
Most commonly used in context of compilers and other
operations on trees

10117-214/514

All GoF Design Patterns

16.Iterator
17.Mediator
18.Memento
19.Observer
20.State
21.Strategy
22.Template

method
23.Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10.Façade
11.Flyweight
12.Proxy

Behavioral:
9. Chain of

Responsibility
10.Command
11.Interpreter

10217-214/514

Bonus: Other Design Principles

10317-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓
Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

10417-214/514

SOLID Principles
Single-responsibility principle: Every class should have only one responsibility -
- cohesion; low coupling; information expert

The Open–closed principle: "Software entities ... should be open for extension,
but closed for modification." -- encapsulation

Liskov substitution principle: Program against interface, even with subclassing

Interface segregation principle: Prefer specific small interfaces; multiple
interfaces per object okay; cohesion

Dependency inversion principle: "Depend upon abstractions, [not] concretions."
-- prefer interfaces over class types; dynamic dispatch

10517-214/514

Other Common Principles
DRY Principle: Don't Repeat Yourself

KISS Principle: Keep It Simple, Stupid

YAGNI Principle: You Aren't Gonna Need It

Principle of Least Astonishment

Boy Scout Rule: Leave the Code Cleaner than you Found it

10617-214/514

Summary
● Now you know all the Gang of Four patterns
● Definitions can be vague
● Coverage is incomplete
● But they’re extremely valuable

○ They gave us a vocabulary
○ And a way of thinking about software

● Look for patterns as you read and write software
○ GoF, non-GoF, and undiscovered

	Principles of Software Construction: Objects, Design, and Concurrency��A Tour of the 23 GoF Design Patterns��Bogdan Vasilescu	Jonathan Aldrich
	Registration is soon! Consider:
	Midterm Question: Decorator
	Slide Number 4
	Today’s goal is not to cover all 23 patterns.
	Grouping Patterns
	All GoF Design Patterns
	Course so far…
	Course so far…
	Patterns we will mostly skip
	Warm Up Scenario
	All GoF Design Patterns
	(New) Problem:
	Abstract Factory
	Abstract Factory Pattern
	Abstract Factory Illustration
	Abstract factory compared to?
	Recall: Factory Method Pattern
	Factory Method Illustration
	Static Factory Method Example
	(New) Problem:
	Solution 1
	Solution 2: default no-arg constructor plus setters and getters for every attribute
	Solution 3
	Builder Pattern
	Gof4 Builder �Illustration
	Builder Code Example
	(New) Problem:
	Singleton Pattern
	Singleton Illustration
	Singleton Discussion
	Course so far…
	Course so far…
	Recall: The Adapter Design Pattern
	Recall: The Adapter �Design Pattern
	Adapter vs Strategy?
	(New) Problem: There are two types of thread schedulers, and two types of operating systems or "platforms".
	(New) Problem: we have to define a class for each permutation of these two dimensions
	Bridge Pattern: Decompose the component's interface and implementation into orthogonal class hierarchies.
	2. Bridge
	Bridge compared to…
	Course so far…
	Decorator vs Composite?
	Decorator vs Strategy?
	Design Problem
	Course so far…
	Façade Pattern
	Façade example
	Façade Illustration
	Slide Number 52
	Facade vs…
	Problem: Imagine implementing a forest of individual trees in a realtime game
	Trick: most of the fields in these objects are the same between all of those instances
	Flyweight Pattern
	Flyweight
	Flyweight Illustration
	Recall: Proxy Design Pattern
	Proxy vs Adapter?
	Proxy vs Decorator?
	Design Problem
	Design Problem
	Course so far…
	Course so far…
	Chain of Responsibility Pattern
	Slide Number 67
	Command Pattern
	Command Pattern
	Command Illustration
	Reminder: Iterator Pattern
	Reminder: Iterator Illustration
	Observer vs. Decorator?
	Observer vs. Promise?
	Design Problem
	Design Problem
	Observer vs. Strategy
	Command vs. Strategy
	Course so far…
	Slide Number 80
	Patterns I am discussing only very briefly for various reasons
	Creational: Prototype Pattern
	Behavioral: Interpreter Pattern
	Mediator Pattern
	Problem:	
	Mediator Illustration
	Slide Number 87
	Problem: without violating encapsulation, allow client of Editor to capture the object’s state and restore later
	Problem: without violating encapsulation, allow client of Editor to capture the object’s state and restore later
	Problem: without violating encapsulation, allow client of Editor to capture the object’s state and restore later
	Memento Pattern
	Problem:
	State Pattern Example
	State Pattern
	Visitor Pattern
	Visitor
	The Visitable interface
	The Visitor interface
	Driving the visitor
	Visitor Pattern Discussion
	All GoF Design Patterns
	Bonus: Other Design Principles
	Where we are
	SOLID Principles
	Other Common Principles
	Summary

