Principles of Software Construction: Objects,
Design, and Concurrency

{Static & Dynamic} x {Typing & Analysis}

Jonathan Aldrich Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

ttttttttttttttttttt

17-214/514 1 [Gys3p

Quiz time!

e Go to Canvas and do the Lecture 22 Quiz
o access code: patterns

17-214/514

2 [8s3p

Is this code buggy?

private static int getValue(Integer i) {
return i.intValue();

17-214/514

3 [&)s3D

How Do You Find Bugs?

e Run it? public class Fails {
public static void main(String[] args) {
getValuve(i null);

private static int getValue(Integer i) {
return i.intValue();

Exception in thread "main" java.lang.NullPointerException Create breakpoint : Cannot invoke "java.lang.Integer.intValue()" because "i" is null
at misc.Fails.getValue(Fails.java:9)
at misc.Fails.main(Fails.java:5)

17-214/514 a [&s3n

How Else Can You Find Bugs?

public class Fails {
public static void main(String[] args) {
getValuve(©: null);

private static int getValue(Integer i) {
return i.intValue();

17-214/514

s [9)S3D

IntelliJ can look at this code and say:

public static void main(String[] args) {
getValue(i: null);

} Passing 'null’ argument to parameter annotated as @NotNull

private static int getValue(Integer i) {
return i.intValue();

17-214/514

6 L&)S3D

(with annotations explicit)

Fails.java

org.jetbrains.annotations.NotNull
Fails {

getValue(@NotNull Integer 1) A
i.intValue()

main(String [] args){

getValue()

17-214/514

7 [&Hs3n

Static Analysis!

How?

17-214/514

public static void main(String[] args) {
getValue(©: null);

t Passing 'null" argument to parameter annotated as @NotNull

private static int getValue(Integer i) {
return i.intValue();

s [&s3D

Static Analysis!

How?

e We know at compile time where getValue gets routed to
e getValue calls a method on i
e icanbenull

public static void main(String[] args) {
getValue(i null);
}

Passing null' argument to parameter annotated as @NotNull

private static int getValue(Integer i) {
return i.intValue();

hy

17-214/514 o [&s3n

What about JS?

fails.js

function getValue(x) {
return X.valueOf();

}

17-214/514 10 %SSD

What about JS?

Run it; v

failsjs > ...

function getValue(x) {
return x.valueOf();

}

console.log(getValue("32"));
console.log(getValue(null));

A VT A W N

PROBLEMS (3 OUTPUT TERMINAL DEBUG CONSOL

return x.valueOf();

AN

TypeError: Cannot read property 'valueOf' of null

17-214/514

11)

3D

Why no warning?

17-214/514

function getValue(x) {
return X.valueOf();

}

console.log(getValue("32"));
console.log(getValue(null));

12 [g)s3D

Another Java vs JS Example

1

~l

class Foo {
constructor(x) {
thas.X = X;

function bar(foo) {
return foo.X;

var foo = new Foo(3);
console.log(bar(foo));
conc<ole looc(bar(3)):

class Foo {
ARt X
Foo(int x) A
this.x = Xx;

by

pdblic static void main(String[] args) {
Foo foo = new Foo(x 3);
bar(foo);
bar(foo: 3);

private static void bar(Foo foo) {
System.out.println(foo.x);

Static vs. Dynamic Typing

e The more knowledge we inject in the code, the more bugs we

can catch at compile time
o Types, nullity annotations, invariants
e At compile-time:

o Dynamically typed languages assume nothing
m Types exist only for values

o Static typing is not completely precise either
m Objects have declared types and run-time types
m Different “strength” type systems

17-214/514 14 [g)s3D

Static vs. Dynamic Typing

e The more knowledge we inject in the code, the more bugs we

can catch at compile time
o Types, nullity annotations, invariants

e |s it worth it?

o Dynamic typing can severely limit inference
o But... static types are a lot of work

17-214/514 15 Lg)s3D

Static vs. Dynamic Typing

e The more knowledge we inject in the code, the more bugs we

can catch at compile time
o Types, nullity annotations, invariants
e |[sitworth it?

o Dynamic typing can severely limit inference
o But... static types are a lot of work

Sebastian K]
e nschmager,
- Stc.ztan Hanenberg ROtpain Robbes,
niversity of Duisburg-Egsen Eric Tanter Andreas Stefik

Essen, Germg Computer Scie
sebastian.kleinsch . o Universit ctence Dept (DCC) De
" schmage X nivers i " Partme, ~
I agcr@slud.um-duc,dc €rsity of Chile, Chile Southern Hlin(':;go{!(:.ompuler Science
s Uni

anenberg @icb,upj-qg robbes@dcc, ycp; ersi
.uni-due.de S&dcec.uchile ¢ versit sville
17-214/514 e.de ronpes@decuchile.c pois University Edwardsyi [gys3D

Static vs. Dynamic Typing

Okay, but:

Top languages over the years

JavaScript 2015 2016 2017 2018 2019 2020 2021
1

2
3
4

5

17-214/514 https://octoverse.github.com/#geographical-distribution-of-active-users 17 @)SSD

False Dichotomy?

Yes, but:

Top languages over the years

2014 2015 2016 2017 2018 2019 2020 2021

3 B TypeScript

4 TypeScript
5

6

17-214/514 https://octoverse.github.com/#geographical-distribution-of-active-users 18 Ld)S3D

Partial Types

ility L
fort, some uti le-time
’ I_OWSteftic types exist and are checked at compi
O a

o Dynamic types are used at run-time

. ignored!
nnotations get ignore : is shallow
oo ker can be shallow or deep; TS
o Type chec

To Type or Not to Type:
Quantifying Detectable Bugs in JavaScript

Zheng Gao Christian Birg Earl T. Barr
Univcrsi(y College London Microsoft Research Universi(y College London
London, Uk Redmond, ysp London, Uk
2.820.12@ucl.ac.yk cbird@microgof; t.com e.barr@ucl.ac yk

large Mature projects even outside the Yebdomodt: ¥ & .00
also a dynamically fom.a 1

17-214/514

o [&S3n

Types in TypeScript

function getValue(x: number) {
return x.valueOf();

Argument of type 'null' 1s not assignhable to parameter of type
"number’'. ts(2345)

I View Problem No quick fixes available
console.log(getValue(null));

17-214/514 20 l9)s3p

Types in TypeScript

function getValue(x: number | null) {
‘ return x.valueOf();

} Object 1s possibly 'null'. ts(2531)
(parameter) x: number | null

View Problem No quick fixes available

console.log(getValue(null));

17-214/514 21 [9)s3n

Step Back

e \Why do we care about types so much?

17-214/514 22 [9)s3n

Step Back

e \Why do we care about types so much?

©)

17-214/514

#1 reason: automatically checked documentation
O Probably dominates “bug finding” advantages in practice

But also: we care about commmon mistakes
Type errors happen to be very common
What else is common?

23 [9)s3p

Step Back

e \Why do we care about types so much?

o #1 reason: automatically checked documentation
O Probably dominates “bug finding” advantages in practice

o But also: we care about common mistakes
o Type errors happen to be very common

o What else is common?

m Nullity errors
m Missing imports

public void forward(String sender) {
if (sender == "me") {
sendSelf();
} else if (sender == "other") {

17-214/514

24 [3)s3p

Static Analysis

e Detect real or plausible bugs based on code patterns

o Plausible: look for risk-prone areas

17-214/514

Deeply nested loops

Overly general types (e.g,. ‘any’ in TS)
Dead code/unused variables

Any other places we often make mistakes?

25 [9)s3p

color = input("Enter your favourite color: *)

I | [| I |

e el i (b S = S - e A
" - : ¥ & 2 Y l) SCANNING
a IC na ySIS ENCODING | NAME | OP NAME opP NAME 0P | ENDMARKER | 1

E ‘utf-8' ‘color' | '=' ‘input’ ‘(* | “Enter your favourite color: * | ‘)’ " E_]

e How?
o Program analysis +
E Module ANALYZER

Vocabulary of patterns e e

.........

)
i Bodyl0] ! "
1---1----' | STATIC CODE
R (EEES ! ANALYSIS
) Assign E |
B sasoop !
A
4 ¥ AST
:";‘4 ''''' :'—""'-: ANALYZER
! ame | : '
! id = ‘color’ ' Call g
[—
PStore ! 1 ' T S—n: _____ !
| RS eREn ' ' 1
. id 'j?ir:eut' . ‘Enter your '
(Denotes value T g : , favourite color: '
being ~-—1——-~' e e e 4
tored) en ctx
ARSI 1
| Load |
PARSING

17-214/514 https://deepsource.|o/blog/|ntroductlon—statlc-code—analg%s/ % S3D

Static Analysis

e Step 1: Tokenization
o Tokens are like the words of software
o Lexical categories, incl. punctuation, identifiers, operators, strings

__

__

N B | |
fmmmmmmemeeemeeaees o T S S e T
| A A ' ~) SCANNING
' v v ‘ v v :
: ENCODING NAME oP NAME oP NAME oP ENDMARKER :
1 |
1 '
: 'utf-8' | 'color' | '=' ‘input’ ‘(* | “Enter your favourite color: * | ‘)’ " :
: :
T - S S SN S '

17-214/514 https://deepsource.|o/blog/|ntroductlon—statlc-code—analﬁs%s/ |_'.@ S3D

"“Enter your favourite color: “
, ' Moduie |
e Step 2: Parsing e
o To the compiler/interpreter, | Boeyitl |
software is a tree i
o Root node is file/module | ssign
o Leaves mainly identifiers, literals ¢ A 3
Internal nodes capture structure | Name | - &
' id = "color’
assign ~---1-c;x-- (-)
x=1 — T B okt T ettt .
: : 1 ' ' Str :
//\ ----- . idr:a'ir::ut' . " ‘Enter your .
x S N Rkl
Consider checking out: https:/ast.carlosroso.com/ g e
PARSING
17-214/514 https://deensource io/bloa/introduction-static-code-analvsis/ D

https://ast.carlosroso.com/

"“Enter your favourite color: “
, ' Motue |
e Step 2: Parsing R~
o What does this get us? ' Booyltl |
o Rich structure i
m Syntactic types (variables, method calls) | Assign
m Dead code, deep nesting YT
o A lot of type resolution RS 2 U £
! Name ' .
m What vars are stored, loaded ' id = color’ | .
m Not complete! \ml-c;x“ (- \
m Need to build to understand imports b i | e T SRR :
'_____n' ' ame 1 . tr :
(Denotes value ' idr:'input : : favi:tl'ei(reyfoull;ri' E
s enes 1t """""""
! Load |
PARSING
17-214/514 https://deensource io/bloa/introduction-static-code-analvsis/

Static Analysis

e Step 2b: Advanced Analysis

©)

17-214/514

The compiler doesn'’t stop at parsing

public boolean div(int a, int z) {
int x = 5;
if (a <= 1) {
X =a-1;
}

return z / X;

then

Q -

30 [&)S3D

Static Analysis

e Step 2b: Advanced Analysis
o The compiler doesn’t stop at parsing

o There is a lot more down this rabbit hole
m Control/data-flow, abstract interpretation, (dynamic) symbolic execution,

o Consider a programming languages, compilers, or program analysis
course

17-214/514 31 [8)S3D

Static Analysis

e Step 3: register analyzers
o At the core: walk the tree

class ListDefinitionChecker(BaseChecker):

msg = "usage of 'list()'

detected, use '[]' instead"

def visit Call(self, node):
name = getattr(node.func, "id", None)

if name and name ==

list. name__ and not node.args:

self.violations.append((self.filename, node.lineno, self.msg))

17-214/514

httns://deensource io/bloa/introduction-static-code-analvsic/ 32 %S3D

class UnusedImportChecker(BaseChecker):
def __init_ (self):
self.import_map = defaultdict(set)

Static Analysis e e

def _add_imports(self, node):

Step 3 reglster analyzers for import_name in node.names:

Store only top-level module name ("os.path" -> "os").
We can't easily detect when "os.path" 1is used.
name = import_name.name.partition(”.")[@]

(:Iéassssi(:: \A/EilF(Ei treaea —_ self.import_map[self.filename].add((name, node.lineno))
Modern: build a database of df visit-inpere(self, node):
self._add_imports(node)
code facts, express
analysis as queries over

Q.

def visit_ImportFrom(self, node):
self._add_imports(node)

def visit_Name(self, node):
tr]éat (jeatEit)Eissee' # We only add those nodes for which a value is being read from.
o ThlS iS hOW COdeQL WorkS' if isinstance(node.ctx, ast.Load):

self.name_map[self.filename].add(node.id)

17-214/514 httns://deensource io/bloa/introduction-static-code-analvsic/ 33 %SSD

public static Object deserialize (InputStream is)
throws IOException {
ObjectInputStream ois = new ObjectInputStream(is);
return ois.readObject();

3

Static Analysis

B2 oD

from DataFlow::PathNode source, DataFlow::PathNode

e Modern: build a database of
sink, UnsafeDeserializationConfig conf
where conf.hasFlowPath(source, sink)
COde faCtS, express select sink.getNode().(UnsafeDeserializationSink)

.getMethodAccess(),

analysis as queries over Wit tedeer
that database.

alerts v
>

Unsafe deserialization of user input.

v

Unsafe deserialization of user input
Path

<

e This is how CodeQL works!

1 getContent(...) : InputStream

2 getContentAsStream(...) : InputStream

toBufferedInputStream(...) : InputStream

getInputStream(...) : InputStream
is : InputStream

ois

Path

Unsafe deserialization of user input

o M W

-

17-214/514 383D

Static Analysis

e Compared to Linters:

o Linters mainly enforce style -- comments, quotes, idioms
m This also requires static analysis! Just nothing particularly fancy

o Some overlap; good conventions help avoid bugs

17-214/514 35 [8)S3D

Static Analysis

e Compared to Parsers:

o Parsers check for syntactic correctness
= Can catch bugs as well, e.g. missing *;”

o Parsing is often a key step in static analysis
m Hard to do right with just text/regexes.

o Parsing is a platform for further analyses
m control-flow, data-flow

17-214/514 36 L8)S3D

So... Static Analysis for Everything?
e Can we find every bug?
o No! Rice’s Theorem

"Any nontrivial property about the language recognized by a Turing
machine is undecidable.” -- Henry Gordon Rice, 1953

o Every static analysis is necessarily incomplete or unsound or
undecidable (or multiple of these)

17-214/514 37 [&)S3D

So... Static Analysis for Everything?

e Can we find every bug?
e Can we guarantee correctness?

17-214/514 38 [9)S3D

So... Static Analysis for Everything?

e Can we find every bug?
e Can we guarantee correctness?

o Yes (partial correctness anyway), but... much less useful

17-214/514

public class Fails {
public static void main(String[] args) {
getValue(it null);

private static int getValue(Integer i) {
return i.intValue();

39 [8)S3D

Soundness & Precision

e Since we can't perfectly analyze behavior statically
o We may miss things by being cautious (unsound; false negative)
o We might identify non-problems (imprecision, false positive)

.A Program state covered in actual execution

- Program state covered by abstract
execution with analysis

unsound imprecise
(false negative) (false positive)

17-214/514

a0 [&S3D

The Social Side

e How to deploy tools that are neither sound nor complete?

17-214/514 a1 [&S3D

Static Analysis at Google

e Centered around FindBugs (succeeded by SpotBugs)
o Essentially, a huge collection of risky patterns on Java bytecode
o Annotated with five levels of concern

CONTRIBUTED ARTICLES

Communications of the AC
10.1145/3188720
Comments

FindBugs

VEWAS: & [@ m SHARE: =@ & @ [£
) f

||
— §offware bugs cost developers and cof..

» Forgot Passwo|

a2 [&s3p

Static Analysis at Google

e Three experiments in the early 2000s:
1. A dashboard: run FindBugs overnight, report results in a centralized
location
Failed because: dashboard is outside the developer’s workflow

17-214/514 a3 [&S3D

Static Analysis at Google

e Three experiments in the early 2000s:
1. A dashboard: run FindBugs overnight, report results in a centralized
location
Failed because: dashboard is outside the developer’s workflow
2. Recurring FixIt events: company-wide one-week effort to fix warnings
Failed because: actually fixed some bugs, but FindBugs is too imprecise
(44% of issues were “bugs”, but only 16% mattered)

17-214/514 aa [&S3D

None of these worked!

e Three experiments in the early 2000s:

1. A dashboard: run FindBugs overnight, report results in a centralized
location
Failed because: dashboard is outside the developer’s workflow

2. Recurring FixIt events: company-wide one-week effort to fix warnings
Failed because: actually fixed some bugs, but FindBugs is too imprecise
(44% of issues were “bugs”, but only 16% mattered)

3. Add to Code Review: run on every change, allow toggling warnings
Failed because: too imprecise; suppressing FPs made it inconsistent

17-214/514 a5 [&S3D

Static Analysis at Google

Okay so then what?

e \What went wrong / what do we need?

17-214/514 a6 L&)S3D

Static Analysis at Google

Okay so then what?

e \What went wrong / what do we need?
1. Precision is key -- developers lose faith in inaccurate tools

2. Provide timely warnings -- in-IDE or rapidly on builds
a. Checkers are way more useful during coding

3. Make a platform -- allow adding useful checks

17-214/514 a7 [&S3D

Static Analysis at Google

Specifically:

e At compile-time:
o Perfectly Precise
m No false-positives; never halt a build incorrectly
o Simple
o Actionable
m |deally to the point of auto-fix suggestions

17-214/514 as [&)S3D

Static Analysis at Google

Specifically:

e At review time: TriCoder
o 90%+ precise
m If it drops below, checker gets disabled! Onus on checker authors to fix
o Actionable, but may require some work
o Improve correctness or code quality

o Some compile-time checks moved to review-time!

e Ran 50K times per day -- in 2018

17-214/514 a9 [&S3D

TriCoder

package com.google.devtools.staticanalysis;
public class Test {

~ Lint Missing a Javadoc comment.
Java
1:02 AM, Aug 21

Please fix

Not useful

public boolean foo() {
return getString() == "foo".toString();

~ ErrorProne String comparison using reference equality instead of value equality

Junotausty | (see hitp:/icode.google.com/plerror-prone/wiki/StringEquality)

1:03 AM, Aug 21
Please fix

l/Idepot/google3ljavalcomlgoogIeldevtoolslstatlcanalysislT est.java

package com.google.devtools.staticanalysis;

public class Test {
public boolean foo() {
return getString() == "foo".toString();
}

public String getString() {
return new String("foo");

}

17-2| el conco

package com.google.devtools.staticanalysis;
import java.util.Objects;

public class Test {
public boolean foo() {
return Objects.equals(getString(), "foo".toString());
}

public String getString() {
return new String("foo");
}
}

so Ld)S3D

Static Analysis at Google

e The gist: Many simple precise checks
o What else could one do?

17-214/514 51 Ld)S3D

Static Analysis at Google

e The gist: Many simple precise checks
o What else could one do?

e |Infer at Facebook

o Built around separation logic; geared heavily towards tracking resources
m Null-pointer dereferences, resource leaks, unintended data access

o Google claims this won’t (easily) scale to their multi-billion line mono-repo

17-214/514 52 Ld)S3D

Static Analysis at Google

e The gist: Many simple precise checks
o What else could one do?

e Use Al?

o Rule-mining from previous reviews
m Detects typical vulnerabilities, bad patterns

o Mostly fairly simple ML (details limited)

<

Amazon Write & Review Code Build & Test
CodeGuru Built-in code reviews

Detect and optimize
. . with actionable the expensive lines
Find your most expensive recommendations of code
lines of code

CodeGuru Reviewer CodeGuru Profiler

17-214/514

code in production

CodeGuru Profiler

tect ar li Fix perfo

&
o
5

Static Analysis at Google

e The gist: Many simple precise checks
o What else could one do?

e Use Al?

o Microsoft’s IntelliSense in VSCode
o Mostly refactorings, code completions
o Trained on large volumes of code

17-214/514 sa Ld)S3D

What else could we do?

e Integrate with bug fixing
Facebook: Getafix, also integrates with
SapFix

o Fancy types / specifications

o Simple example is Liquid Types —
simple logical predicates on types

o Extreme example: fully specified,
statically verified code
(cf. CompCert, selL4)

o More work for developers, but also
more payoff

o Related research projects at CMU
m Gradual Verification, Liquid Types for Java

17-214/514

Code base at Facebook

Summary

e \We all constantly make mistakes

o Static analysis captures common issues

o Choose suitable abstractions; consider trade-offs
m E.g., dynamic vs. static typing; sound vs. precise

e At big-tech-scale, automated checks are key
o Help normalize coding standards
o Even rare bugs are common at scale
o But: social factors are very important
o Active area of research, including here at CMU!
o Take programming languages, program analysis courses to explore

17-214/514 56 Ld)S3D

