
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

DevOps (part 1)

Jonathan Aldrich Bogdan Vasilescu

217-214/514

Lecture 23 Quiz
On Canvas

317-214/514

● Frameworks to extend have been selected
○ We’ll distribute the picks by tomorrow
○ If you are a maintainer, take some time to improve docs now, then

wait and prepare to field Issues & PRs (quickly).
○ If not, pick one to extend when they come online

■ See the handout: add n new data plugins and n - 1 new visualization plugins; make them reasonably
different from the existing ones, and use at least one 3rd party API

○ Deadline: next week Friday

Administrative

417-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Static Analysis ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Distributed systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

517-214/514

DevOps

617-214/514

Early days:
Boxed software,
infrequent releases

717-214/514

These days:
Hosted software, frequent releases
Customer may not even notice update

817-214/514

From Release Date to Continuous Release
● Traditional View: Boxed Software

○ Working toward fixed release date, QA heavy before release
○ Release and move on
○ Fix post-release defects in next release or through expensive patches

● Frequent releases
○ Incremental updates delivered frequently (weeks, days, …), e.g.

Browsers
○ Automated updates (“patch culture”; “updater done? ship it”)

● Hosted software
○ Frequent incremental releases, hot patches, different versions for

different customers, customer may not even notice update

917-214/514

1017-214/514

Dev resp. vs Ops resp.
● Coding
● Testing, static analysis, reviews
● Continuous integration
● Bug tracking
● Running local tests and

scalability experiments
● …

● Allocating hardware resources
● Managing OS updates
● Monitoring performance
● Monitoring crashes
● Managing load spikes, …
● Tuning database performance
● Running distributed at scale
● Rolling back releases
● …

1117-214/514

Dev resp. vs Ops resp.
● Coding
● Testing, static analysis, reviews
● Continuous integration
● Bug tracking
● Running local tests and

scalability experiments
● …

● Allocating hardware resources
● Managing OS updates
● Monitoring performance
● Monitoring crashes
● Managing load spikes, …
● Tuning database performance
● Running distributed at scale
● Rolling back releases
● …

1217-214/514

DevOps buzz word:
Shortening / Blending of Dev-Ops cycle

1317-214/514

Better coordinate between developers and operations (collaborative)

Reduce friction bringing changes from development into production

Consider the entire tool chain into production (holistic)

Document and version all dependencies and configurations
("configuration as code")

Small iterations, incremental and continuous releases

Heavy automation, e.g., continuous delivery, monitoring

Key Ideas and Principles

1417-214/514

Common Practices
All configurations in version control

Test and deploy in containers

Automated testing, testing, testing, ...

Monitoring, orchestration, and automated actions in practice

Microservice architectures

Release frequently

1517-214/514

Heavy Automation, Lots of Tooling

1617-214/514

Let’s zoom in on the different stages

1717-214/514

Recall: Continuous Integration

1817-214/514

1917-214/514

19

2017-214/514

2117-214/514

Continuous Integration
● Automation
● Ensures absence of obvious build issues and

configuration issues (e.g., dependencies all checked in)
● Ensures tests are executed
● May encourage more tests
● Can run checks on different platforms

2217-214/514

Aside: The role of signaling

https://blog.devops4me.com/status-badges-in-azure-devops-pipelines/

2317-214/514
Trockman, A., Zhou, S., Kästner, C., & Vasilescu, B. (2018). Adding sparkle to social coding: An empirical
study of repository badges in the npm ecosystem. International Conference on Software Engineering (pp.
511-522).

2417-214/514

Continuous Integration
● Automation
● Ensures absence of obvious build issues and

configuration issues (e.g., dependencies all checked in)
● Ensures tests are executed
● May encourage more tests
● Can run checks on different platforms

2517-214/514

Releasing Software

2617-214/514

Semantic Versioning for Releases
● Given a version number MAJOR.MINOR.PATCH, increment the:

○ MAJOR version when you make incompatible API changes,
○ MINOR version when you add functionality in a backwards-compatible

manner, and
○ PATCH version when you make backwards-compatible bug fixes.

● Additional labels for pre-release and build metadata are available
as extensions to the MAJOR.MINOR.PATCH format.

http://semver.org/

2717-214/514

Versioning entire projects

27

2817-214/514

Release management
with branches

2917-214/514

Release management
with branches

3017-214/514 Release cycle of Facebook’s apps

3117-214/514

Example: Pre-2017 release
management model at Facebook

3217-214/514

Facebook Tests for Mobile Apps
Unit tests (white box)
Static analysis (null pointer warnings, memory leaks, ...)
Build tests (compilation succeeds)
Snapshot tests (screenshot comparison, pixel by pixel)
Integration tests (black box, in simulators)
Performance tests (resource usage)
Capacity and conformance tests (custom)

Further readings: Rossi, Chuck, Elisa Shibley, Shi Su, Kent Beck, Tony Savor, and Michael Stumm. Continuous deployment of mobile software at facebook
(showcase). In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 12-23. ACM, 2016.

3317-214/514

Diff lifecycle: local testing

3417-214/514

Diff lifecycle: CI testing (data center)

3517-214/514

Diff lifecycle: diff ends up on main branch

(the use of one’s own products)

3617-214/514

Release every two weeks

3717-214/514

Quasi-continuous push from master (1,000+ devs, 1,000 diffs/day); 10 pushes/day

3817-214/514

https://www.softwire.com/blog/2013/09/26/continuous-integration-traffic-lights-revamp/index.ht
ml

https://samritchie.wordpress.com/2013/1
0/16/build-server-traffic-lights/

3917-214/514

Diff lifecycle: in production

4017-214/514

Release Challenges for Mobile Apps
● Large downloads
● Download time at user discretion
● Different versions in production
● Pull support for old releases?

Any alternatives?

4117-214/514

Release Challenges for Mobile Apps
● Large downloads
● Download time at user discretion
● Different versions in production
● Pull support for old releases?

Current trend:

● App as container, most content + layout from server
● Server side releases silent and quick, consistent

4217-214/514

From Release Date to Continuous Release
● Traditional View: Boxed Software

○ Working toward fixed release date, QA heavy before release
○ Release and move on
○ Fix post-release defects in next release or through expensive patches

● Frequent releases
○ Incremental updates delivered frequently (weeks, days, …), e.g.

Browsers
○ Automated updates (“patch culture”; “updater done? ship it”)

● Hosted software
○ Frequent incremental releases, hot patches, different versions for

different customers, customer may not even notice update

4317-214/514

Efficiency of release pipeline

https://www.slideshare.net/jmcgarr/continuous-delivery-at-netflix-and-beyond

4417-214/514

Let’s automate all the things!

4517-214/514

CC BY-SA 4.0
G. Détrez

https://en.wikipedia.org/wiki/Continuous_delivery#/media/File:Continuous_Delivery_process_diagram.svg

4617-214/514

Running Software

4717-214/514

A virtual machine, but:
● Lightweight virtualization
● Sub-second boot time
● Shareable virtual images with full setup incl. configuration

settings
● Separate docker images for separate services (web

server, business logic, database, …)
● Used a lot in development, not just deployment

Containers drastically simplify managing ops

Lots more on Tuesday

4817-214/514

● Scripts to change system configurations (configuration files,
install packages, versions, …); declarative vs imperative

● Usually put under version control

Key idea: Configuration management,
Infrastructure as Code

$nameservers = ['10.0.2.3']
file { '/etc/resolv.conf':

ensure => file,
owner => 'root',
group => 'root',
mode => '0644',
content => template('resolver/r.conf'),

}

- hosts: all
 sudo: yes
 tasks:
 - apt: name={{ item }}
 with_items:
 - ldap-auth-client
 - nscd
 - shell: auth-client-config -t nss -p lac_ldap
 - copy: src=ldap/my_mkhomedir dest=/…
 - copy: src=ldap/ldap.conf dest=/etc/ldap.conf
 - shell: pam-auth-update --package
 - shell: /etc/init.d/nscd restart

(Puppet)(ansible)

4917-214/514

Container Orchestration with Kubernetes
● Manages which container to deploy to which machine
● Launches and kills containers depending on load
● Manage updates and routing
● Automated restart, replacement, replication, scaling
● Kubernetes master controls many nodes

5017-214/514

CC BY-SA 4.0 Khtan66

https://en.wikipedia.org/wiki/Kubernetes#/media/File:Kubernetes.png

5117-214/514

Monitoring
● Monitor server health
● Monitor service health
● Collect and analyze measures or log files
● Dashboards and triggering automated decisions

○ Many tools, e.g., Grafana as dashboard, Prometheus for
metrics, Loki + ElasticSearch for logs

○ Push and pull models

5217-214/514

5317-214/514

Grafana

5417-214/514

5517-214/514

QA doesn’t stop in Dev:
Testing in Production

5617-214/514

Chaos Experiments

5717-214/514

5817-214/514

Crash Telemetry

5917-214/514

A/B Testing

6017-214/514

What If
... we had plenty of subjects for experiments

... we could randomly assign subjects to treatment and control
group without them knowing

... we could analyze small individual changes and keep everything
else constant

▶ Ideal conditions for controlled experiments

▶ Toward causal inference

6117-214/514

Implementing A/B Testing
Implement alternative versions of the system

■ Using feature flags (decisions in implementation)
■ Separate deployments (decision in router/load balancer)

Map users to treatment group

■ Randomly from distribution
■ Static user - group mapping
■ Online service (e.g., launchdarkly, split)

Monitor outcomes per group

■ Telemetry, sales, time on site, server load, crash rate

https://launchdarkly.com/
https://www.split.io/

6217-214/514

Feature Flags
Boolean options
Good practices: tracked explicitly, documented, keep them localized and independent
External mapping of flags to customers

■ who should see what configuration
■ e.g., 1% of users sees one_click_checkout, but always the same users; or

50% of beta-users and 90% of developers and 0.1% of all users

if (features.enabled(userId, "one_click_checkout")) {
 // new one click checkout function
} else {
 // old checkout functionality
}

def isEnabled(user): Boolean = (hash(user.id) % 100) < 10

6317-214/514

6417-214/514

Comparing Outcomes

Group A

base game

2158 Users
average 18:13 min time
on site

Group B

game with extra god
cards
10 Users
average 20:24 min time
on site

64

6517-214/514
65

6617-214/514
66

6717-214/514 https://techcrunch.com/2014/06/29/ethics-in-a-data-driven-world/

https://techcrunch.com/2014/06/29/ethics-in-a-data-driven-world/

6817-214/514

Canary
Releases

6917-214/514

Canary Releases
● Testing releases in production
● Incrementally deploy a new release to users, not all at once
● Monitor difference in outcomes (e.g., crash rates, performance,

user engagement)
● Automatically roll back bad releases
● Technically similar to A/B testing
● Telemetry essential

7017-214/514

Canary Releases

7117-214/514

Canary Releases at Facebook
Phase 0: Automated unit tests

Phase 1: Release to Facebook employees

Phase 2: Release to subset of production machines

Phase 3: Release to full cluster

Phase 4: Commit to master, rollout everywhere

Monitored metrics: server load, crashes, click-through rate
Further readings: Tang, Chunqiang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander, Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert
Karl. Holistic configuration management at Facebook. In Proceedings of the 25th Symposium on Operating Systems Principles, pp. 328-343. ACM, 2015. and
Rossi, Chuck, Elisa Shibley, Shi Su, Kent Beck, Tony Savor, and Michael Stumm. Continuous deployment of mobile software at facebook (showcase). In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 12-23. ACM, 2016.

http://sigops.org/s/conferences/sosp/2015/current/2015-Monterey/printable/008-tang.pdf
https://research.fb.com/wp-content/uploads/2017/02/fse-rossi.pdf

7217-214/514

TAing in Fall 2023?
Enjoyed content of this class?

Practicing critiquing other designs?
Thinking through design problems with other students?

If interested, talk to us or apply directly at
https://www.ugrad.cs.cmu.edu/ta/F23/ (select 17214)

https://www.ugrad.cs.cmu.edu/ta/F23/

7317-214/514

Summary
Increasing automation of tests and deployments

Containers and configuration management tools help
with automation, deployment, and rollbacks

Monitoring becomes important

Many new opportunities for testing in production (feature
flags are common)

7417-214/514

Bonus: You need smarter tools to
operate at modern scale

7517-214/514

1. Lots of automation (example from Google)

Now also: language model-based completions:
https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html

https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html

7617-214/514

2. Build
system

7717-214/514

2. Build
system

7817-214/514

7917-214/514

2. Build
system

8017-214/514

2. Build
system

8117-214/514

Which tests to run?

8217-214/514

Scenario 1: a change modifies
common_collections_util

8317-214/514

Scenario 1: a change modifies
common_collections_util

8417-214/514

Scenario 1: a change modifies
common_collections_util

8517-214/514

Scenario 1: a change modifies common_collections_util

8617-214/514

Scenario 2: a change modifies the
youtube_client

8717-214/514

Scenario 2: a change modifies the youtube_client

8817-214/514

3. Version control

● Problem: even git can get slow at Facebook scale
○ 1M+ source control commands run per day
○ 100K+ commits per week

8917-214/514

3. Version control

● Solution: redesign version control
○ Sparse checkouts: only fetch metadata (lightweight), get source on-demand
○ Don’t fetch entire history. Can do this with git too (git clone --depth=1), but

won’t work for distributed collaboration

9017-214/514

Some Common Principles
● Ensure Isolation

○ Of impacts of a given changeset
■ On the build status
■ On production code

○ Not dissimilar to distributed systems!
■ Which makes sense; this is also a distributed system, just made up of people

● Work incrementally
○ Release carefully, monitor heavily
○ Cut costs where possible by building & testing as little as possible

9117-214/514

Monolithic repository – no major use of
branches for development

9217-214/514

A recent history of code organization
● A single team with a monolithic application in a single repository
● …
● Multiple teams with many separate applications in many separate

repositories
● Multiple teams with many separate applications microservices in

many separate repositories
● A single team with many microservices in many repositories
● …
● Many teams with many applications in one big Monorepo

9317-214/514

What is a monolithic repository (monorepo)?

● A single version control repository containing multiple
○ Projects
○ Applications
○ Libraries

● Often using a common build system

2015 talk by Benjamin Eberlei

9417-214/514

Monorepos in industry

9517-214/514

Monorepos in industry

9617-214/514

Monorepos in industry

9717-214/514

Monorepos in open-source

2016 talk by FABIEN POTENCIER

9817-214/514 2016 talk by FABIEN POTENCIER

Monorepos in open-source

9917-214/514

Advantages of Monorepos
● High discoverability

○ Developers can read & search the entire codebase
● High reuse

○ The same tools (e.g., linters, auto-complete) are globally available
○ Any package can become a library

■ Which is why you always build an API!

● Simplifies maintenance
○ Global refactorings, cleanup

■ Orgs like Google will regularly dedicate a specific day to a type of improvement
(e.g., improve documentation), flag all potentially problematic sites

10017-214/514

Some more advantages
● Easy continuous integration and code review for changes

spanning several projects
● (Internal) dependency management is a non-issue
● Less context switching for developers
● Code more reusable in other contexts
● Access control is easy

10117-214/514

Releasing at scale in industry
● Facebook:

https://atscaleconference.com/videos/rapid-release-at-massive-scale/

● Google:
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google
-scal
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html

● Why Google Stores Billions of Lines of Code in a Single Repository:
https://www.youtube.com/watch?v=W71BTkUbdqE

● F8 2015 - Big Code: Developer Infrastructure at Facebook's Scale:
https://www.youtube.com/watch?v=X0VH78ye4yY

https://atscaleconference.com/videos/rapid-release-at-massive-scale/
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html
https://www.youtube.com/watch?v=W71BTkUbdqE
https://www.youtube.com/watch?v=X0VH78ye4yY

