
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Containers & Cloud

Jonathan Aldrich Bogdan Vasilescu Matt Davis

217-214/514

Lecture 24 Quiz
On Canvas, password: “smile”

317-214/514

● HW6c: due Friday
● Final: Tuesday 1-4pm next week

○ The final is cumulative.
○ May bring: 4 pages front and back, no electronic devices
○ Remember your resources:

○ Sample Midterms 1, 2, Final Questions (all are posted on Piazza)
○ Piazza and Office Hours

● More grades released and posted to Canvas tonight
○ HW6b
○ HW5 regrades

● Team feedback forms released tonight
○ Required if there were citizenship problems in your HW6 team

(see p.9 of the HW6 handout for details; all teams free to fill it out too)

Administrative

417-214/514

Why me?
● Industry background: Global Technology Director
● Built and managed global virtualized software systems
● Deployed across cloud and on-prem data centers in:

– North America – Europe – Asia
● 90% Physical à 100% Virtualized ($$$$)

● Virtualization is transformative – let’s find out why!

517-214/514

Recall Programming Reality

617-214/514

Deeper into Docker

717-214/514

Virtual Machines offer Machines as Code
Multiple VMs can sit on one server

VMs provide complete isolation

But, “translation” from guest OS to
host is slow, clunky

And each VM has entire OS, filesys

https://www.docker.com/resources/what-container/

817-214/514

Containers offer Virtualization on the OS

https://www.docker.com/resources/what-container/

917-214/514

In More Depth

https://www.slideshare.net/FabioFerrari31/docker-containers-talk-linux-day-2015

1017-214/514

The Key: Layered file Systems

1117-214/514

Quick Tangent: What’s the “downside”?

1217-214/514

Docker images are layers
● Each action yields a new layer
● The base layer is typically an OS

○ E.g., “ubuntu:20.04”
● Data from previous layers is

“copy-on-write”

Consequences:

● Layer-stacks are easily reused
making images very light

● Security via IO permissions

https://ragin.medium.com/docker-what-it-is-how-images-are-structured-docker-vs-vm-and-
some-tips-part-1-d9686303590f

1317-214/514

Hence,
A virtual machine, but:

● Lightweight virtualization
● Sub-second boot time
● Shareable virtual images with full setup

incl. configuration settings
● Used in development and deployment
● Separate docker images for separate services

(web server, business logic, database, …)

1417-214/514

DockerHub
Provides a central place to find images

1517-214/514

Side note on DockerHub
We can push too!

● Just like GitHub, make an account and push images
○ Most images are formatted as org/name:tag
○ Tag is like a release; you must tag each image

● There are many other container registries. Most cloud providers have
their own

1617-214/514

Let’s Take a Look at Docker
Remember the good old days?
→ Let’s containerize this

1717-214/514

First, A Dockerfile
Instructs Docker how to build the image
● This one was added to ‘frontend’

1817-214/514

First, A Dockerfile
Instructs Docker how to build the image
● FROM: the base “layer”

○ Doesn’t need to be an OS! Very often isn’t → reuse
○ Note: large layers can take a while to download

1917-214/514

First, A Dockerfile
Instructs Docker how to build the image
● COPY: duplicate file system data into image

○ Why?

2017-214/514

First, A Dockerfile
Instructs Docker how to build the image
● COPY: duplicate file system data into image

○ We can run many instances of an image, called containers
○ None of those will have access to the host file system!
○ We can either COPY data into them, or “mount” an external

directory
■ For the latter, can use `readonly` or allow edits – use carefully!

2117-214/514

First, A Dockerfile
Instructs Docker how to build the image
● WORKDIR: tell the builder to move into said directory

2217-214/514

First, A Dockerfile
Instructs Docker how to build the image
● RUN: execute a command now

○ This will create another layer (as did COPY)
○ Only happens on build, not when running a container

2317-214/514

First, A Dockerfile
Instructs Docker how to build the image
● CMD: command to execute when launching a container

○ This does not happen when we build
○ Can also provide an ENTRYPOINT script

2417-214/514

Same for the Backend
Note how the FROM image can have detailed tags

● These come from Dockerhub.

2517-214/514

Docker Demo
● Build and start front-end
● Build and start back-end
● See layers
● Try to connect to front-end from browser

2617-214/514

What Now?
We’ve packaged frontend and backend as separate images

● These are in the same repo -- why separate containers?

How do we talk to them?

● Not quite obvious: containers isolate everything

2717-214/514

Running Docker Containers

2817-214/514

Running Docker Containers
Run: docker run --rm -p 80:3000 frontend

● --rm: removes the container after shutdown
○ Important! Docker keeps machines around indefinitely otherwise
○ Containers can hold quite a bit of data

● -p 80:3000: instruct Docker to open an external port (80) and
forward requests there to the internal one (3000)

2917-214/514

Start the Backend too, go to localhost:80, and…

3017-214/514

It doesn’t work!?
The frontend loads, but can’t talk to the backend

Why not?

3117-214/514

Remember: containers means isolation
Networks are also virtual
● Each container subscribes to ‘bridge’ by default
● Containers are assigned unique IPs within each network
● We could make this work by (a) starting backend, (b) finding its

IP on ‘bridge’, (c) rebuilding frontend with that IP hard-coded in
package.json, and (d) launching frontend

● Not great; imagine running a website that way

3217-214/514

Docker Compose
We (and Bogdan’s suntan!) need
container management tools

● Lowest level: docker compose
○ Specify images, networks & ports, links, etc.
○ Can launch many copies of each image

3317-214/514

Docker Compose Demo
● Let Docker Compose:

○ Start front-end
○ Start back-end
○ Configure all the permissions

● Try to connect to front-end

● We had to change the front-end’s
package.json proxy statement from
localhost to backend then rebuild the
front-end container

● Why?

3417-214/514

Many apps can be deployed this way (Mastodon)

3617-214/514

Where are we now?
● We’ve discussed:

● Docker as a build tool
● DockerHub for deployment
● Docker Compose for orchestration

● Something is off about our app
● What’s missing?

3717-214/514

Remember this?

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

3817-214/514

Towards Distributed Systems
● Docker compose helps us set up local systems

○ The result could be microservice or a larger app
○ Often very useful: enables modular development with all the ease

of docker images for deployment
● But in our case, backend and frontend are both

microservices
○ Why might we not want just one of each, hard-coded to talk to

each other?

3917-214/514

Towards Distributed Systems
Let’s start with:

● Put up two VMs in the cloud, deploy one image on each
● Tell ‘frontend’ where to find ‘backend’ by IP

Frontend Backend

4017-214/514

Towards Distributed Systems
How about:

● Put up two VMs in the cloud, deploy one image on each
● Tell ‘frontend’ where to find ‘backend’ by IP
● Problems?

Frontend Backend

4117-214/514

Things to consider in distributed systems
● How will VMs know where other VMs are?
● How will VMs know they can trust incoming messages?
● What parts of your topology may change?
● How will you change the topology without interruptions?
● Where will you need replication?
● How will clients find your application?

4217-214/514

nginx
Is a reverse proxy*

● A reverse proxy does for servers what a regular proxy
does for users – provide decoupling
○ Good for security, performance, robustness to system changes, ...

Frontend Backend
nginx

*Technically it’s a web server that is really easy to set up as a reverse proxy server

4317-214/514

Nginx Configuration Example
● Handles up to 1024 clients
● ‘upstream’ is the server

being proxied for
○ There can be many

● ‘server’ is this proxy server
○ Listens on port, passes

messages to upstream

Note: here the proxy is between the
frontend and backend

Note: the ‘upstream’ terminology may
seem backwards to you … this is because
we are using nginx here as a reverse proxy

4417-214/514

Nginx Configuration Example
Front-end package.json nginx.conf

docker-compose.yml

4517-214/514

● Reverse proxies make it easy to divide web traffic
○ Give nginx multiple upstreams

à nginx will divide traffic using round robin (by default)

VM-2

Load Balancing

Frontend Backend

nginx

Frontend Backend

VM-1

4617-214/514

Combine Creatively
● Not sufficient, but very helpful for:

○ Performance, through replication
■ Nginx server is often very powerful

○ Robustness, handle failing nodes via indirection

Frontend

Backends

nginx nginx
DB

4917-214/514

Who tells the proxies what to do?
● Note that Nginx doesn’t solve most of our problems!

○ How will VMs know where other VMs are?
○ How will VMs know they can trust incoming messages?
○ What parts of your topology may change?
○ How will you change the topology without interruptions?
○ Where will you need replication?
○ How will clients find your application?

5017-214/514

Managing Distributed Topologies is Hard
So don’t do it (yourself)!
● Kubernetes (k8s), built by Google, manages containers
● Many now-familiar ideas; let’s

inspect them

5117-214/514

Managing Systems with Kubernetes
The Master:

● Tracks global system state in etcd
● Scheduler tracks resource availa-

bility, assigns work to hardware
● Controllers plan services to meet

demands, goals
● API for monitoring, updating

5217-214/514

Managing Systems with Kubernetes
The workers
● Each node is a machine
● Pods consist of connected container(s)

○ Conf., a docker-compose system
○ In fact, containers are usually Docker

● Kubelets monitor the pods, can reprovision
○ Connected to the master

● Kube-proxy provides routing, load balancing
○ Conf., nginx

5317-214/514

Managing Systems with Kubernetes
● Note how much this decouples the client from the code

○ In our previous systems, the client talked directly to the frontend
○ Now, to a data center,

which talks to a proxy, to a
pod, to a container, to code

5417-214/514

Addresses several questions
● How will VMs know where other VMs are?
● How will VMs know they can trust incoming messages?
● What parts of your topology may change?
● How will you change the topology without interruptions?
● Where will you need replication?
● How will clients find your application?

5517-214/514

In Brief: Secure Communication
Auth tokens reign supreme these days
● Single sign on, then just share your transitive, secret token
● Also popular in authorizing 3rd party apps

– see OAuth(2)

5617-214/514

In Brief: Where to Replicate?
Complicated decision, but monitoring helps

● Cloud providers & tools like Kubernetes provide tons of telemetry
● Other tools tap into this to offer insight
● Of course, also financial aspects,

legal considerations (geography),
forecasting (nothing is ever instant)

5717-214/514

This brings us to: Deploying in the Cloud

5817-214/514

Deploying in the Cloud
Many types of cloud services are available

● Most natural: Infrastructure as a Service (IaaS)
○ Provision Virtual Machines (VMs) of a given size

■ That’s right, virtualization on top of virtualization
○ Or databases, firewalls, entire clusters – anything that would go in

building your own data center

5917-214/514

There’s more in the cloud

https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-iaas/
Note: not everyone thinks of these as nested categories

https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-iaas/

6117-214/514

PaaS: why install your own software?
● Don’t just rent machines, rent systems

○ Distributed systems have many common components
■ Like design patterns!

○ Platform as a Service provides preconfigured machines,
orchestrators

● Very handy for startups, small teams
○ Managing large distributed systems is hard.

6217-214/514

SaaS: why think about machines at all?
● Rent apps, don’t think about where they run

○ Common example: email
○ GMail, Google Docs, SalesForce, Colab, etc. are all SaaS

● Very common use-case, major benefits
○ Leaves it to cloud provider to manage infrastructure and

deployment. Often a win-win – they benefit from scale.
○ Seriously, don’t discount this as an option!

■ Obviously not always applicable, but if you can avoid building your
own email client, you should, no matter how easy it seems to
develop. A huge chunk of the cost is “hidden” in ops.

6317-214/514

Recently Popular: Serverless Computing
● Doesn’t mean “no servers,” just “developers won’t see the

servers”
○ Recall PaaS: time not spent managing ops is a big win

● Several instantiations:
○ Functions (e.g., AWS Lambda) – event-driven services that are

scaled by the cloud provider (sometimes called FaaS)
○ Workflow orchestrators – low/no-code system design
○ Databases – data stores that resize seamlessly (part of BaaS)

6417-214/514 https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/serverless/web-app

6517-214/514

Cloud Computing: Getting to the Point
● We talk a lot about how good design benefits from reuse

○ Of familiar patterns,
○ …of libraries,
○ …of your own code

● This isn’t a distributed systems course
● Take advantage of existing components unless you’re

really sure what you are doing

6617-214/514

Finally, is the Cloud right for you?
● You’re borrowing someone else’s computer

○ That comes at a big premium
■ Hosting on-prem can be many times cheaper
■ I recall a thread where a Twitter engineer said their AWS bill would

be $100M+/month if they went that way
○ Also fewer guarantees

■ Some VMs are rarely available
■ Allocating large nrs of any kind almost certainly requires discussion

● Still worth it if you:
○ Are a small team, can’t spare cycles for system ops
○ Are growing quickly, won’t know your computing needs far out

6717-214/514

Summary
● Containers provide isolation

○ Lighter than VMs, built with layers
○ Managed hierarchically, via configuration-as-code

● Proxies provide decoupling
○ Good for performance, robustness, security
○ Kubernetes takes this to massive scale

● Think carefully about how you put your app in the cloud
○ Consider tradeoffs between IaaS, PaaS, SaaS, …
○ Also consider cost; cloud bills pile up fast

