
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

The Last One:
Locking Back & Looking Forward

Bogdan Vasilescu Jonathan Aldrich Christian Kästner
 (surprise appearance)

217-214/514

Looking Back at the Semester

317-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Introduction, Overview, and Syllabus

Bogdan Vasilescu Jonathan Aldrich

417-214/514

How Modern Software Gets Built

“Building software is like
constructing a building. A
construction company
wouldn’t build its hammers
and drills from scratch, or
source and chop all of the
lumber themselves.”

517-214/514

Welcome to the era of “big code”

(informal reports)

617-214/514

Our goal: understanding both the building blocks and also the
design principles for construction of software systems at scale

From Programs to Applications and Systems
Writing algorithms, data

structures from scratch

Functions with inputs
and outputs

Sequential and local
computation

Full functional
specifications

Reuse of libraries,
frameworks

Asynchronous and
reactive designs

Parallel and distributed
computation

Partial, composable,
targeted models

717-214/514

2021 GitHub State of the Octoverse report

817-214/514

User needs
(Requirements) CodeMiracle?

Maintainable?
Testable?
Extensible?
Scalable?
Robust? ...

917-214/514

Which version is better?
static void sort(int[] list, boolean ascending) {
 …
 boolean mustSwap;
 if (ascending) {
 mustSwap = list[i] > list[j];
 } else {
 mustSwap = list[i] < list[j];
 }
 …
}

interface Order {
 boolean lessThan(int i, int j);
}
class AscendingOrder implements Order {
 public boolean lessThan(int i, int j) { return i < j; }
}
class DescendingOrder implements Order {
 public boolean lessThan(int i, int j) { return i > j; }
}

static void sort(int[] list, Order order) {
 …
 boolean mustSwap =
 order.lessThan(list[j], list[i]);
 …
}

Version A:

Version B':

1017-214/514

it depends
Depends on what?
What are scenarios?
What are tradeoffs?

In this specific case, what
would you recommend?
(Engineering judgement)

1117-214/514

Some qualities of interest, i.e., design goals
Functional

correctness Adherence of implementation to the specifications

Robustness Ability to handle anomalous events

Flexibility Ability to accommodate changes in specifications

Reusability Ability to be reused in another application

Efficiency Satisfaction of speed and storage requirements

Scalability Ability to serve as the basis of a larger version of the application

Security Level of consideration of application security

Source: Braude, Bernstein,
Software Engineering. Wiley

2011

1217-214/514

Semester overview
● Introduction to Object-Oriented

Programming
● Introduction to design

○ Design goals, principles, patterns

● Designing objects/classes
○ Design for change
○ Design for reuse

● Designing (sub)systems
○ Design for robustness
○ Design for change (cont.)

● Design for large-scale reuse

Crosscutting topics:
● Building on libraries and frameworks
● Building libraries and frameworks
● Modern development tools: IDEs,

version control, refactoring, build
and test automation, static analysis

● Testing, testing, testing
● Concurrency basics

1317-214/514

Principles of Software Construction
(Design for change, class level)

Starting with Objects
(dynamic dispatch, encapsulation, entry points)

Jonathan Aldrich Bogdan Vasilescu

1417-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

1517-214/514

Interfaces and Objects in Java
interface Counter {
 int get();
 int add(int y);
 void inc();
}
Counter obj = new Counter() {
 int v = 1;
 public int get() { return this.v; }
 public int add(int y) { return this.v + y; }
 public void inc() { this.v++; }
};

System.out.println(obj.add(obj.get()));
// 2

This uses anonymous
classes to create an
object without a class.
This isn’t very common, it
just looks a lot like the
TS.

interface Counter {
 v: number;
 inc(): void;
 get(): number;
 add(y: number): number;
}
const obj: Counter = {
 v: 1,
 inc: function() { this.v++; },
 get: function() { return this.v; },
 add: function(y) { return this.v + y; }
}

1617-214/514

Multiple Implementations of Interface

interface Point {
int getX();
int getY();

}
class PolarPoint implements Point {

double len, angle;
PolarPoint(double len, double angle)

{this.len=len; this.angle=angle;}
int getX() { return this.len * cos(this.angle);}
int getY() { return this.len * sin(this.angle); }
double getAngle() {…}

}
Point p = new PolarPoint(5, .245);

This is Java code!

1717-214/514

interface Animal {
void makeSound();

}
class Dog implements Animal {

public void makeSound() { System.out.println("bark!"); } }
class Cow implements Animal {
 public void makeSound() { moo(); }

public void moo() {System.out.println("moo!"); } }
Animal x = new Animal() {
 public void makeSound() { System.out.println("chirp!"); }}
x.makeSound(); // “chirp”

Animal d = new Dog();
d.makeSound(); // “bark!”
Animal b = new Cow();
b.makeSound(); // “moo!”
b.moo(); // compile-time error

Check your
Understanding

Animal a = new Animal();
a.makeSound(); // compile-time error

1817-214/514

JavaScript:
Closures for Hiding
All methods and fields are
public, no language
constructs for access
control

TypeScript added them, so
it’s quite similar to Java!

In JS: Encoding hiding with
closures

function createPolarPoint(len, angle) {
 let xcache = -1;
 let internalLen=len;
 function computeX() {…}

return {
getX: function() {

computeX(); return xcache; },
getY: function() {

return len * sin(angle); }
};

}
const pp = createPolarPoint(1, 0);
pp.getX(); // works
pp.computeX(); // runtime error
pp.xcache // undefined
pp.len // undefined

1917-214/514

How to hide information?

class CartesianPoint {
int x,y;
Point(int x, int y) {

this.x=x;
this.y=y;

}
int getX() { return this.x; }
int getY() { return this.y; }
int helper_getAngle();

}

const point = {
x: 1, y: 0,
getX: function() {…}
helper_getAngle:

function() {…}
}

2017-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

IDEs, Build system, Continuous
Integration, Libraries

Bogdan Vasilescu Jonathan Aldrich

2117-214/514

Productivity Requires Automation Requires
Abstraction

2217-214/514

Quick overview of today’s toolchain: Build
Systems
How does this happen?

2317-214/514

Starting a program: Java
All Java code is in classes, so how to create an object
and call a method?

Special syntax for main method in class (java X calls
main in X)

// start with: java Printer
class Printer {

void print() {
System.out.println("hi");

 }
 public static void main(String[] args) {

Printer obj = new Printer();
obj.print();

}
}

Main method to be
executed, here used to
create object and invoke
method

Static methods belong to
class not the object,
generally avoid them

This is Java code!

in Java,
everything is

a class

main must be
public and

static

2417-214/514

Starting a Program
Objects do not do anything on their own, they wait for
method calls

Every program needs a starting point, or waits for events// start with: node file.js
function createPrinter() {

return {
print: function() { console.log("hi"); }

}
}
const printer = createPrinter();
printer.print()
// hi

Defining interfaces,
functions, classes

Starting:
Creating objects and
calling methods

Typescript compiles to
Javascript, by the way. There
are several ways to run it.

This is Typescript code!

2517-214/514

https://maven.apache.org/guides/getting-
started/maven-in-five-minutes.html

2617-214/514

● Node.js is a JS runtime. npm is its
package manager.

2717-214/514

● For each in {IDE, Build systems, libraries, CI}:
○ What is it today?
○ What is under the hood?

● What is next?

Abstraction, Reuse, and Programming Tools

2817-214/514

Under the Hood: IDEs
Combine build systems + IDEs + plugins (checkstyle example/demo!)

2917-214/514

Under the Hood: Libraries & Frameworks
Which kind is a command-line parsing package?

Which kind is Android?

How about a tool that runs tests based on annotations you add in your code?

http://tom.lokhorst.eu/2010/09/why-libraries-are-better-than-frameworks`

3017-214/514

Automatically builds, tests,
and displays the result

We – and everyone else –
used to use Travis CI.

● Until they randomly stopped supporting
OSS.

GitHub has native CI support,
and it’s pretty good: GitHub
Actions.

● Sidebar on how our GH Actions are
configured for HW1

Under the Hood: Continuous Integration

3117-214/514

HW1: Extending the Flash Card System

3217-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Specifications and unit testing,
exceptions

Bogdan Vasilescu Jonathan Aldrich

3317-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

3417-214/514

Who’s to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> ArrayOutOfBoundsException

3517-214/514

Service*
implementation

Service* interface

Client
environment

 Hidden from
service* provider

 Hidden from
service* client

* service = object,
subsystem, …

● Imperative to build systems that scale!
● This is why we:

○ Encode specifications
○ Test

Most real-world code has a contract

3617-214/514

Throwable

Exception

RuntimeException

IOException

EOFException

FileNotFoundException

NullPointerException

IndexOutOfBoundsException

ClassNotFoundException

Object

Error

StackOverflowError

…

…

…

…

Checked Exceptions

Java’s exception hierarchy (messy)

3717-214/514

Testing
How do we know
this works?

Testing

Are we done?

int isPos(int x) {
 return x >= 1;
}

@Test
void testIsPos() {
 assertTrue(isPos(1));
}

@Test
void testNotPos() {
 assertFalse(isPos(-1));
}

This is Java code

3817-214/514

Docstring Specification
class RepeatingCardOrganizer {
 ...
 /**
 * Checks if the provided card has been answered correctly the required
number of times.
 * @param card The {@link CardStatus} object to check.
 * @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.
 */
 public boolean isComplete(CardStatus card) {
 // IGNORE THIS WHEN SPECIFICATION TESTING!
 }
}

3917-214/514

Specification vs. Structural Testing
 /**
 * Checks if the provided card has been answered correctly the required
number of times.
 * @param card The {@link CardStatus} object to check.
 * @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.
 */
 public boolean isComplete(CardStatus card) {
 return card.getSuccesses.get(0); // <-- Bad, but passes both tests
 }

This is Java code

4017-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Test case design

Bogdan Vasilescu Jonathan Aldrich

4117-214/514

CreditWallet.pay()
public boolean pay(int cost, boolean useCredit) {
 if (useCredit) {
 if (enoughCredit) {
 return true;
 }
 }
 if (enoughCash) {
 return true;
 }
 return false;
}

Test
case

useCredit
Enough
Credit

Enough
Cash

Result Coverage

1 T T - Pass --

2 F - T Pass --

3 F - F Fails Statement

4217-214/514

Control-Flow of CreditCard.pay()
useCredit

enough
Credit

pay
w/credit

true

true

enough
Cash

pay
w/cash

fail

false

false

false

true

Paths:

● {true, true}: pay w/credit
● {false, true}: pay w/cash
● {false, false}: fail
● {true, false, true}: pay w/cash

after failing credit
● {true, false, false}: try credit,

but
fail, and no cash

4317-214/514

Writing Testable Code
What is the problem with this?

public boolean hasHeader(String path) throws IOException {
 List<String> lines = Files.readAllLines(Path.of(path));
 return !lines.get(0).isEmpty()
}

// to achieve a ‘false’ output without having a test input file:
try {
 Path tempFile = Files.createTempFile(null, null);
 Files.write(tempFile,"\n".getBytes(StandardCharsets.UTF_8));
 hasHeader(tempFile.toFile().getAbsolutePath()); // false
} catch (IOException e) {
 e.printStackTrace();
}

4417-214/514

Back to Specification Testing
What would you test differently in this situation?

● “if useCredit is set and enough credit is available”:
○ Test both true, either/both false

● “pays with cash if enough cash is available; otherwise”:
○ Test true, false

● Could to this with as few as three test cases

/** Pays with credit if useCredit is set and enough
 * credit is available; otherwise, pays with cash if
 * enough cash is available; otherwise, returns false.
 */
public boolean pay(int cost, boolean useCredit);

4517-214/514

Structural Testing vs. Specification Testing
You will typically have both code & (prose) specification

● Test specification, but know that it can be underspecified
● Test implementation, but not to the point that it cannot

change
● Use testing strategies that leverage both

○ There is a fair bit of overlap; e.g., BVA yields useful branch
coverage

4617-214/514

HW 2: Testing the Flash Card System

4717-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Object-oriented Analysis

Bogdan Vasilescu Jonathan Aldrich

4817-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

4917-214/514

Problem
Space
(Domain
Model)

Solution
Space

(Object Model)

● Real-world concepts

● Requirements, Concepts

● Relationships among concepts

● Solving a problem

● Building a vocabulary

● System implementation

● Classes, objects

● References among objects and
inheritance hierarchies

● Computing a result

● Finding a solution

5017-214/514

An object-oriented design process
Model / diagram the problem, define concepts

● Domain model (a.k.a. conceptual model), glossary

Define system behaviors

● System sequence diagram
● System behavioral contracts

Assign object responsibilities, define interactions

● Object interaction diagrams

Model / diagram a potential solution

● Object model

OO Analysis:
Understanding
the problem

OO Design:
Defining a
solution

5117-214/514

Visual notation: UML

Library Account

accountID
lateFees

Name of
real-world
concept
(not software class)

Properties
of concept

Book

title
author

borrow

1 *

Associations
between
concepts

Multiplicities/cardinalities
indicate “how many”

5217-214/514

One domain model for the library system

5317-214/514

UML Sequence Diagram Notation

User System Actors in this
use case
(systems and
real-world
objects/people)

Messages and
responses for
interactions,
text describes what
happens conceptually

Time proceeds
from top to
bottom

login(card)

borrow(book)

success?, due date

5417-214/514

Representational gap
● Real-world concepts:

● Software concepts:

PineTree
age
height

harvest()

Forest
-trees

…

Ranger

surveyForest(…)

…

5517-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Responsibility Assignment

Bogdan Vasilescu Jonathan Aldrich

5617-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

5717-214/514

From concepts to objects
● How are domain concepts different from classes?

○ Should every concept become a class?
○ Does every class need to represent a concept?

id: int
lateFees: int

borrow(Book): bool
returnItem(Book)
payFees(int)

Library Account

accountID
lateFees

Book

title
author

borrow

1 *

LibraryAccount

5817-214/514

Domain model (left) vs object model (right)

5917-214/514

Low Representational Gap
Identified concepts provide inspiration for classes in the implementation

Classes mirroring domain concepts often
intuitive to understand, rarely change
(low representational gap)

Library Account

accountID
lateFees

Book

title
author

borrow

1 *

class Account {

id: Int;

lateFees: Int;

borrowed: List<Book>;

 boolean borrow(Book) { … }

 void save();

}

class Book { … }

6017-214/514

Topologies with different coupling

6117-214/514

Design Heuristic: Law of Demeter
● Each module should have only limited knowledge about other

units: only units "closely" related to the current unit

● In particular: Don’t talk to strangers!

● For instance, no a.getB().getC().foo()

 So don’t do this ^ !!

for (let i of shipment.getBox().getItems())
shipmentWeight += i.getWeight() …

6217-214/514

: Student : System
login(id)

checkout(bookid)

due date

logout()

receipt

Requirements Analysis Object-Level Design

6317-214/514

6417-214/514

Who should be responsible for
knowing the grand total of a sale?

6517-214/514

Anti-Pattern:
God Object

class Chat {

List<String> channels;

Map<String, List<Msg>> messages;

Map<String, String> accounts;

Set<String> bannedUsers;

File logFile;

File bannedWords;

URL serverAddress;

Map<String, Int> globalSettings;

Map<String, Int> userSettings;

Map<String, Graphic> smileys;

CryptStrategy encryption;

Widget sendButton, messageList;

}

class Chat {
Content content;
AccountMgr accounts;
File logFile;
ConnectionMgr conns;

}
class ChatUI {

Chat chat;
Widget sendButton, …;

}
class AccountMgr {

… acounts, bannedUsr…
}

6617-214/514

Information Expert (Design Heuristic)

● Heuristic: Assign a responsibility to the class that has the
information necessary to fulfill the responsibility

● Typically follows common intuition

● Software classes instead of Domain Model classes

○ If software classes do not yet exist, look in Domain Model for fitting
abstractions (-> correspondence)

● Design process: Derive from domain model (key principles:
Low representational gap and low coupling)

6717-214/514

HW3: Santorini (Base game)

6817-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Inheritance and delegation

Jonathan Aldrich Bogdan Vasilescu

6917-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del.
✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

7017-214/514

All object types exist in a class hierarchy
In Java:

Object

CollectionError

ListRuntimeError
Exception

7117-214/514

Inheritance enables Extension & Reuse
class Animal {
 final String name;

 public Animal(String name) {
 this.name = name;
 }

 public String identify() {
 return this.name;
 }
}

class Dog extends Animal {
 public Dog() {
 super("dog");
 }
}

Animal animal = new Dog();
animal.identify(); // “dog”

Declared Type
Instantiated TypeCompile-time

Check (Java)

7217-214/514

Is Square a behavioral subtype of Rectangle?
class Rectangle {

 int width;
 int height;

 public Rectangle(int width,
 int height) {

 this.width = width;
 this.height = height;
 }
 public void scale(int factor) {
 width=width*factor;

 height=height*factor;
 }
}

public class Square extends Rectangle {

 public Square(int width) {
 super(width, width);
 }

}

7317-214/514

Design option 3

class CreditCard implements PaymentCard {

 private CardData cardData = new(…);

 public BigInteger getDigits() {
 return cardData.getDigits();
 }

…

}

class DebitCard implements PaymentCard {

 …

}

PaymentCard

CardData

CreditCard DeditCard

You can still achieve good reuse
with composition+delegation!

class CardData {

 private final String cardHolderName;

 private final BigInteger digits;

 private final Date expirationDate;

 public CardData(…) {…}

 public String getCardHolderName() {…}

 public BigInteger getDigits() {…}

 public Date getExpiration() {…}

}

Is this better?

7417-214/514

abstract class AbstractCashCard
 implements PaymentCard {
 private int balance;
 public AbstractCashCard(int balance) {
 this.balance = balance;
 }

 public boolean pay(int amount) {
 if (amount <= this.balance) {
 this.balance -= amount;
 chargeFee();
 return true;
 }
 return false;
 }
 abstract void chargeFee();
}

class GiftCard extends AbstractCashCard {
 @Override
 void chargeFee() {
 return; // Do nothing.
 }
}

class DebitCard extends AbstractCashCard {
 @Override
 void chargeFee() {
 this.balance -= this.fee;
 }
}

This is the Template Method Design Pattern!

Design Tradeoffs?

7517-214/514

Context

Strategy
execute()

ConcreteStrA ConcreteStrB

algorithm()

execute() execute()

Strategy Pattern in UML.

7617-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Design Patterns

Jonathan Aldrich Bogdan Vasilescu

7717-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

7817-214/514

Discussion with design patterns

● Carpentry:
○ "Is a dovetail joint or a miter joint better here?"

● Software Engineering:
○ "Is a strategy pattern or a template method better here?"

7917-214/514

History:
Design Patterns
(1994)

8017-214/514

Context

Strategy
execute()

ConcreteStrA ConcreteStrB

algorithm()

execute() execute()

8117-214/514

s :
ConcrStrA

algorithm
(s) s.execute()

:
Context

Strategy can be provided in method call or in any other way to context

algorithm
(t) t.execute()

t :
ConcrStrB

8217-214/514

One design scenario
● Amazon.com processes millions of orders each year,

selling in 75 countries, all 50 states, and thousands of
cities worldwide. These countries, states, and cities
have hundreds of distinct sales tax policies and, for
any order and destination, Amazon.com must be able
to compute the correct sales tax for the order and
destination.

8317-214/514

Design Patterns and
Programming Languages
Design patterns address general design challenges

Some patterns address problems with built-in solutions

Example: Strategy pattern vs higher-order functions

const ASC = function(i: number, j: number): boolean {
return i < j;

}
const DESC = function(i: number, j: number): boolean {

return i > j;
}

function sort(
list: number[],
order: (number, number) => boolean) {

 …
 boolean mustSwap = order(list[j], list[i]);
 …
}
> sort(list, ASC);

8417-214/514

8517-214/514

(function () {
// ... all vars and functions are in this scope only
// still maintains access to all globals

}());

Module pattern: Hide internals in closure

Function provides local scope, internals not accessible

Function directly invoked to execute it once

Wrapped in parentheses to make it expression

Discovered around 2007, became very popular, part of Node

8617-214/514

The Composite Design Pattern

8717-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Refactoring & Anti-patterns

Bogdan Vasilescu Jonathan Aldrich

8817-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

8917-214/514

Refactoring
● Any functionality-preserving restructuring

○ That is, the semantics of the program do not change, but
the syntax does

○ Why might this be useful?
■ What was the problem again? How would you fix it?

class Player {
Board board;
/* in code somewhere… */ this.getSquare(n);
Square getSquare(String name) { // named monopoly squares

for (Square s: board.getSquares())
if (s.getName().equals(name))

return s;
return null;

}}

9017-214/514

Refactoring: IDE support
● Rename class, method, variable to something not

in-scope
● Extract method/inline method
● Extract interface
● Move method (up, down, laterally)
● Replace duplicates

9117-214/514

True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

true

String s = "foo";

String t = s;

System.out.println(s == t);

true

String u = "iPhone";

String v = u.toLowerCase();

String w = "iphone";

System.out.println(v == w);

false (in practice)

5j

"foo"

t

v

u

w

"iPhone"

si 5

"iphone"

"iphone"
?

9217-214/514

Anti-patterns
● Kind of like the evil twins of design patterns
● Similar to the design hierarchy on the right, →

we want to think of both:
○ The design principles they run against
○ The low-level “heuristics” to detect them in code

■ Including many “code smells”

● As before, a pattern language helps
○ Many of these can be (re)paired with a correct pattern

Goals

Heuristics Patterns

Principles

9317-214/514

Liquid APIs
Each method changes
state,
then returns this

(Immutable version:
Return modified copy)

class OptBuilder {
private String argName = "";
private boolean hasArg = false;
...
OptBuilder withArgName(String n) {

this.argName = n;
return this;

}
OptBuilder hasArg() {

this.hasArg = true;
return this;

}
...
Option create() {

return new Option(argName,
 hasArgs, ...)

}
}

9417-214/514

Under the Hood: Builder Pattern
When creating many variations of a complex object:

● Assign assembling work to a Builder object
○ When cascading, the builder returns itself,

modified on every update
○ Offers a method that generates the

resulting object
● Direct clients to only use the Builder

○ E.g., hide the constructor

https://refactoring.guru/design-patterns/builder

9517-214/514

Traversing a collection
● Since Java 1.0:

 Vector arguments = …;

 for (int i = 0; i < arguments.size(); ++i) {

 System.out.println(arguments.get(i));

 }

● Java 1.5: enhanced for loop
List<String> arguments = …;

for (String s : arguments) {

 System.out.println(s);

}

● Works for every implementation of Iterable
public interface Iterable<E> {

 public Iterator<E> iterator();

}

public interface Iterator<E> {

 boolean hasNext();

 E next();

 void remove();

}

● In JavaScript (ES6)
let arguments = …

for (const s of arguments) {

 console.log(s)

}

● Works for every implementation with a “magic”
function [Symbol.iterator] providing an iterator
interface Iterator<T> {

 next(value?: any): IteratorResult<T>;

 return?(value?: any): IteratorResult<T>;

 throw?(e?: any): IteratorResult<T>;

}

interface IteratorReturnResult<TReturn> {

 done: true;

 value: TReturn;

}

9617-214/514

HW 4&5: Santorini with God Cards and GUI

9717-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Introduction to GUIs

Jonathan Aldrich Bogdan Vasilescu

9817-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

9917-214/514

Scanner input = new Scanner(System.in);
while (questions.hasNext()) {
 Question q = question.next();
 System.out.println(q.toString());
 String answer = input.nextLine();
 q.respond(answer);
}

Interaction with CLI

10017-214/514

Event-based programming
● Style of programming where control-flow is driven by (usually

external) events

public void performAction(ActionEvent e) {
 List<String> lst = Arrays.asList(bar);
 foo.peek(42)
}

public void performAction(ActionEvent e) {
 bigBloatedPowerPointFunction(e);
 withANameSoLongIMadeItTwoMethods(e);
 yesIKnowJavaDoesntWorkLikeThat(e);
}

public void performAction(ActionEvent e) {
 List<String> lst = Arrays.asList(bar);
 foo.peek(40)
}

10117-214/514

Anatomy of an HTML Page
Nested elements
● Sizing
● Attributes
● Text

You can write these out
directly, or compose and
modify them
programmatically!
● Or, both! (we’ll see

in a minute).

10217-214/514

Interactivity: A GUI is more than just a document

● How do we make it “work”?
● This is a two-part answer: (1) we can attach scripts to elements,

but (2) …how? [Design question!]

10317-214/514

That’s extremely simple, let’s try something
slightly more complicated.

Consider: TicTacToe
(note that this is NOT the same code you’ll see in recitation next week,

but the game itself will look basically the same.)

10417-214/514

Decoupling with the Observer pattern
● Let the Game tell all interested components about updates

10517-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

(Towards) Building Web-Apps

Jonathan Aldrich Bogdan Vasilescu Matt Davis

10617-214/514

An architectural pattern:
Model-View-Controller (MVC)

Manage inputs from user:
mouse, keyboard, menu, etc.

Manage display of
information on the screen

Manage data related to the
application domain

10717-214/514

Model View Controller in Santorini

https://overiq.com/django-1-10/mvc-pattern-and-django/

Game
(God
Cards)

Board,
Tower,
Player

HTML
Template
Engine

10817-214/514

TicTacToe

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

JSON

NanoHTTPd

/newgame

ReactJS (+ HandleBars)

10917-214/514

Connecting React
to Some Core
Use observer pattern to let
react component observe
changes

Encapsulate in useEffect()
hook

function App() {

 const [data, setData] =

React.useState(null);

 React.useEffect(() => {

 function handleStatChange(e) {

 setData(e.updatedData);

 }

 CoreAPI.subscribe(handleStatChange);

 return () => {

 CoreAPI.unsubscribe(handleStatChange);

 };

 });

 return (

 <div>/* using state in data */</div>

);

}

Further discussion:
https://reactjs.org/docs/hooks-custo
m.html

https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-custom.html

11017-214/514

How Do We Talk?
Talking to another computer is hard

● Why? We already covered
HTTP (GET/POST), right?

11117-214/514

Engine plus:

● Web APIs — provided by
browsers, like the DOM,
AJAX, setTimeout and more.

● Event loop

● Callback queue

The JavaScript Runtime

11217-214/514

function task(message) {
 // emulate time consuming task
 let n = 10000000000;
 while (n > 0){
 n--;
 }
 console.log(message);
}

console.log('Start script...');
setTimeout(() => {
 task('Download a file.');
}, 1000);
console.log('Done!');

By far the most common way to
express and manage asynchronicity
in JavaScript programs.

Solution: Callbacks

Start script...
Done!
Download a file.

11317-214/514

“Callback Hell”?
● Issue caused by coding

with complex nested
callbacks.

● Every callback takes an
argument that is a result of
the previous callbacks.

const makeBurger = nextStep => {
 getBeef(function (beef) {
 cookBeef(beef, function (cookedBeef) {
 getBuns(function (buns) {
 putBeefBetweenBuns(buns, beef, function(burger) {
 nextStep(burger)
 })
 })
 })
 })
}

// Make and serve the burger
makeBurger(function (burger) => {
 serve(burger)
})

If asynchronous:

11417-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Asynchrony and Concurrency

Jonathan Aldrich Bogdan Vasilescu

11517-214/514

Basic concurrency in Java
● An interface representing a task

● A class to execute a task in a thread

makes sure that thread is terminated
before the next instruction is executed
by the program

public interface Runnable {
 void run();
}

public class Thread {
 public Thread(Runnable task);
 public void start();
 public void join();
 …
}

11617-214/514

Solving “Callback Hell” with Promises
● You can chain promises.

○ ‘then’ returns a promise
(remember cascade?)

● Promises can be resolved
in parallel

● No more deep nesting
● Easy to follow control-flow

let bunPromise = getBuns();
let cookedBeefPromise = getBeef()
 .then(beef => cookBeef(beef));
// Resolve both promises in parallel
Promise.all([bunPromise, cookedBeefPromise])
 .then(([buns, beef]) => putBeefBetweenBuns(buns, beef))
 .then(burger => serve(burger))

If asynchronous:

11717-214/514

Next Step: Async/Await
● Async functions return a promise

○ And are allowed to ‘await’ synchronously
○ May wrap concrete values
○ May return rejected promises on exceptions

11817-214/514

public static void main(String[] args) throws InterruptedException {
 BankAccount bugs = new BankAccount(1_000_000);
 BankAccount daffy = new BankAccount(1_000_000);

 Thread bugsThread = new Thread(()-> {
 for (int i = 0; i < 1_000_000; i++)
 transferFrom(daffy, bugs, 1);
 });

 Thread daffyThread = new Thread(()-> {
 for (int i = 0; i < 1_000_000; i++)
 transferFrom(bugs, daffy, 1);
 });

 bugsThread.start(); daffyThread.start();
 bugsThread.join(); daffyThread.join();
 System.out.println(bugs.balance() - daffy.balance());
}

Threading Example: Money-grab (2)

11917-214/514

Deadlock example
Two threads:

A does transfer(a, b, 10) B does transfer(b, a, 10)

Execution trace:
A: lock a (v)
B: lock b (v)
A: lock b (x)
B: lock a (x)
A: wait
B: wait

Deadlock!

class Account {
 double balance;

 void withdraw(double amount){ balance -= amount; }

 void deposit(double amount){ balance += amount; }

 void transfer(Account from, Account to, double amount){
 synchronized(from) {
 from.withdraw(amount);
 synchronized(to) {
 to.deposit(amount);
 }
 }
 }
}

12017-214/514

Amdahl’s law
● The speedup is

limited by the serial
part of the program.

12117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency: Safety & Immutability

Jonathan Aldrich Bogdan Vasilescu

12217-214/514

Making a Class Immutable
public class Complex {
 double re, im;

 public Complex(double re, double im) {
 this.re = re;
 this.im = im;
 }

 public double getRealPart() { return re; }
 public double getImaginaryPart() { return im; }

 public double setRealPart(double re) { this.re = re; }
 public double setImaginaryPart(double im) { this.im = im; }

 …

12317-214/514

Fixed
class Stack {
 readonly #inner: any[]
 constructor (inner: any[]) {
 this.#inner=inner.slice()
 }
 push(o: any): Stack {
 const newInner = this.#inner.slice()
 newInner.push(o)
 return new Stack(newInner)
 }
 peek(): any {
 return this.#inner[this.#inner.length-1]
 }
 getInner(): any[] {
 return this.#inner.slice()
 // Java: return new ArrayList(inner)
 }
}

12417-214

Non atomicity and thread (un)safety

@NotThreadSafe
public class UnsafeCountingFactorizer implements Servlet {
 private long count = 0;

 public long getCount() { return count; }

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 ++count;
 encodeIntoResponse(resp, factors);
 }
}

value->9 9+1->10 value->10

value->9 9+1->10 value->10

A
B

12517-214

You can do better (?)

volatile is synchronization without mutual exclusion
public class StopThread {

 private static volatile boolean stopRequested;

 public static void main(String[] args) throws Exception {

 Thread backgroundThread = new Thread(() -> {

 while (!stopRequested)

 /* Do something */ ;

 });

 backgroundThread.start();

 TimeUnit.SECONDS.sleep(1);

 stopRequested = true;

 }

}

forces all accesses (read or write) to
the volatile variable to occur in main
memory, effectively keeping the volatile
variable out of CPU caches.

https://stackoverflow.com/questions/3519664/difference-between-volatile-and-synchronized-in-java

12617-214

Monitor Example
class SimpleBoundedCounter {
 protected long count = MIN;
 public synchronized long count() { return count; }
 public synchronized void inc() throws InterruptedException {

awaitUnderMax(); setCount(count + 1);
 }
 public synchronized void dec() throws InterruptedException {

awaitOverMin(); setCount(count - 1);
 }
 protected void setCount(long newValue) { // PRE: lock held

count = newValue;
notifyAll(); // wake up any thread depending on new value

 }
 protected void awaitUnderMax() throws InterruptedException {

while (count == MAX) wait();
 }
 protected void awaitOverMin() throws InterruptedException {

while (count == MIN) wait();
 }
}

12717-214/514

Principles of Software Construction: Objects,
Design, and Concurrency

Distributed Systems – Events Everywhere!

Bogdan Vasilescu Jonathan Aldrich

12817-214/514

Database Server

Credit card server

Android Phone

12917-214/514

13017-214/514

13117-214/514

Retry!
● Still need an exit-strategy

○ Learn HTTP response codes
■ Don’t bother retrying on a 403 (go find out why)

○ Use the API response, if any
■ Errors are often documented -- e.g., GitHub will send a “rate limit exceeded” message

const delay = retryCount => new Promise(resolve =>
setTimeout(resolve, 10 ** retryCount));

const getResource = async (retryCount = 0, lastError = null) => {
 if (retryCount > 5) throw new Error(lastError);
 try {
 return apiCall();
 } catch (e) {
 await delay(retryCount);
 return getResource(retryCount + 1, e);
 }
};

https://www.bayanbennett.com/posts/retrying-and-exponential-backoff-with-promises/

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

13217-214/514

Proxy Design Pattern
● Local representative for remote object

○ Create expensive obj on-demand
○ Control access to an object

● Hides extra “work” from client
○ Add extra error handling, caching
○ Uses indirection

https://refactoring.guru/design-patterns/proxy

13317-214/514

https://refactoring.guru/design-patterns/adapter

13417-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Libraries and Frameworks
(Design for large-scale reuse)

Jonathan Aldrich Bogdan Vasilescu

13517-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

13617-214/514

Earlier in this course: Class-level reuse
Language mechanisms supporting reuse

● Inheritance
● Subtype polymorphism (dynamic dispatch)
● Parametric polymorphism (generics)*

Design principles supporting reuse
● Small interfaces
● Information hiding
● Low coupling
● High cohesion

Design patterns supporting reuse
● Template method, decorator, strategy, composite, adapter, …

* Effective Java items 26, 29, 30, and 31

13717-214/514

Reuse and variation:
Family of development tools

13817-214/514

General distinction: Library vs. framework

Library

Framework

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering
}

/ render component on first view and
resizing
protected void
paintComponent(Graphics g) {
// draw a red box on his
componentDimension d = getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(),
d.getHeight());}
}

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering
}

/ render component on first view and
resizing
protected void
paintComponent(Graphics g) {
// draw a red box on his
componentDimension d = getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(),
d.getHeight());}
}

your code

user
interacts

your code

user
interacts

13917-214/514

Is this a whitebox or blackbox framework?
public abstract class Application extends JFrame {
 protected String getApplicationTitle() { return ""; }
 protected String getButtonText() { return ""; }
 protected String getInitialText() { return ""; }
 protected void buttonClicked() { }
 private JTextField textField;
 public Application() {
 JPanel contentPane = new JPanel(new BorderLayout());
 contentPane.setBorder(new BevelBorder(BevelBorder.LOWERED));
 JButton button = new JButton();
 button.setText(getButtonText());
 contentPane.add(button, BorderLayout.EAST);
 textField = new JTextField("");
 textField.setText(getInitialText());
 textField.setPreferredSize(new Dimension(200, 20));
 contentPane.add(textField, BorderLayout.WEST);
 button.addActionListener((e) -> { buttonClicked(); });
 this.setContentPane(contentPane);
 this.pack();
 this.setLocation(100, 100);
 this.setTitle(getApplicationTitle());
 ...
 }

public class Calculator extends Application {
 protected String getApplicationTitle() { return "My Great Calculator"; }
 protected String getButtonText() { return "calculate"; }
 protected String getInititalText() { return "(10 – 3) * 6"; }
 protected void buttonClicked() {
 JOptionPane.showMessageDialog(this, "The result of " + getInput() +
 " is " + calculate(getInput()));
 }
 private String calculate(String text) { ... }
}
public class Ping extends Application {
 protected String getApplicationTitle() { return "Ping"; }
 protected String getButtonText() { return "ping"; }
 protected String getInititalText() { return "127.0.0.1"; }
 protected void buttonClicked() { ... }
}

14017-214/514

Tangrams

14117-214/514

The use vs. reuse dilemma
● Large rich components are very useful, but rarely fit

a specific need
● Small or extremely generic components often fit a

specific need, but provide little benefit

“maximizing reuse minimizes use”
C. Szyperski

14217-214/514

public class Application extends JFrame {
private JTextField textfield;
private Plugin plugin;
public Application(Plugin p) { this.plugin=p; p.setApplication(this); init(); }
protected void init() {

JPanel contentPane = new JPanel(new BorderLayout());
contentPane.setBorder(new BevelBorder(BevelBorder.LOWERED));
JButton button = new JButton();
if (plugin != null)

button.setText(plugin.getButtonText());
else

button.setText("ok");
contentPane.add(button, BorderLayout.EAST);
textfield = new JTextField("");
if (plugin != null)

textfield.setText(plugin.getInititalText());
textfield.setPreferredSize(new Dimension(200, 20));
contentPane.add(textfield, BorderLayout.WEST);
if (plugin != null)

button.addActionListener(/* … plugin.buttonClicked();… */);
this.setContentPane(contentPane);
…

}
 public String getInput() { return textfield.getText();}

}

The cost of changing a framework

public class CalcPlugin implements Plugin {
private Application application;
public void setApplication(Application app) { this.application = app; }
public String getButtonText() { return "calculate"; }
public String getInititalText() { return "10 / 2 + 6"; }
public void buttonClicked() {
JOptionPane.showMessageDialog(null, "The result of "

+ application.getInput() + " is "
+ calculate(application.getText())); }

public String getApplicationTitle() { return "My Great Calculator"; }
}

public interface Plugin {
 String getApplicationTitle();
 String getButtonText();
 String getInititalText();
 void buttonClicked() ;
 void setApplication(Application app);
}

class CalcStarter { public static void main(String[] args) {
new Application(new CalcPlugin()).setVisible(true); }}

Consider adding an extra method.
Requires changes to all plugins!

14317-214/514

An example plugin loader in Node.js

const args = process.argv
if (args.length < 3)

console.log("Plugin name not specified");
else {

const plugin = require("plugins/"+args[2]+".js")()
startApplication(plugin)

}

14417-214/514

Principles of Software Construction

API Design

Jonathan Aldrich Bogdan Vasilescu
(Many slides originally from Josh Bloch, some from Christian Kästner)

14517-214/514

Where we are

Subtype
Polymorphism

Information Hiding,
Contracts

Immutability

Types

Unit Testing

Domain Analysis

Inheritance & Deleg.

Responsibility
Assignment,

Design Patterns,
Antipattern

Promises/Reactive P.

Integration Testing

GUI vs Core

Frameworks and
Libraries, APIs

Module systems,
microservices

Testing for
Robustness

CI, DevOps, Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

14617-214/514

API: Application Programming Interface
● An API defines the boundary between components/modules in a

programmatic system

14717-214/514

Libraries and frameworks (and protocols!)
define APIs

Library

Framework

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering
}

/ render component on first view and
resizing
protected void
paintComponent(Graphics g) {
// draw a red box on his
componentDimension d = getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(),
d.getHeight());}
}

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering
}

/ render component on first view and
resizing
protected void
paintComponent(Graphics g) {
// draw a red box on his
componentDimension d = getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(),
d.getHeight());}
}

your code

your code

API

API

14817-214/514

An API design process: plan with use cases
● Similar to our framework discussion!
● Define the scope of the API

○ Collect use-case stories, define requirements

○ Be skeptical: Distinguish true requirements from so-called solutions, "When in doubt,
leave it out."

○ Be explicit about non-goals

● Draft a specification, gather feedback, revise, and repeat. Keep it simple,
short!

● Code early, code often: Write client code before you implement the API

14917-214/514

Sample Early API Draft

// A collection of elements (root of the collection hierarchy)
public interface Collection<E> {

 // Ensures that collection contains o
 boolean add(E o);

 // Removes an instance of o from collection, if present
 boolean remove(Object o);

 // Returns true iff collection contains o
 boolean contains(Object o);

 // Returns number of elements in collection
 int size();

 // Returns true if collection is empty
 boolean isEmpty();

 ... // Remainder omitted
}

15017-214/514

Hyrum’s Law
“With a sufficient number of users of
an API, it does not matter what you
promise in the contract: all
observable behaviors of your
system will be depended on by
somebody.”

https://xkcd.com/1172/

https://www.hyrumslaw.com/

https://xkcd.com/1172/
https://www.hyrumslaw.com/

15117-214/514

public class Rectangle {

public Rectangle(Point e, Point f) …

}

// …

Point p1 = PointFactory.Construct(…);

// new PolarPoint(…); inside

Point p2 = PointFactory.Construct(…);

// new PolarPoint(…); inside

Rectangle r = new Rectangle(p1, p2);

Applying Information hiding: Factories

15217-214/514

Don't let your output become your de facto API
● Document the fact that output formats may evolve in the future

● Provide programmatic access to all data available in string form

public class Throwable {

 public void printStackTrace(PrintStream s);

}

15317-214/514

Principle: Minimize conceptual weight
● API should be as small as possible but no smaller

○ When in doubt, leave it out

● Conceptual weight: How many concepts must a
programmer learn to use your API?

○ APIs should have a "high power-to-weight ratio"

15417-214/514

Boilerplate Code
 import org.w3c.dom.*;
 import java.io.*;
 import javax.xml.transform.*;
 import javax.xml.transform.dom.*;
 import javax.xml.transform.stream.*;

 /** DOM code to write an XML document to a specified output stream. */
 static final void writeDoc(Document doc, OutputStream out) throws IOException{
 try {
 Transformer t = TransformerFactory.newInstance().newTransformer();
 t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM, doc.getDoctype().getSystemId());
 t.transform(new DOMSource(doc), new StreamResult(out)); // Does actual writing
 } catch(TransformerException e) {
 throw new AssertionError(e); // Can’t happen!
 }
 }

• Generally done via cut-and-paste
• Ugly, annoying, and error-prone

15517-214/514

15617-214/514

HW6: Data Analytics Framework

15717-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Organizing Systems at Scale:
Modules, Dependencies, Breaking
Changes

Jonathan Aldrich Bogdan Vasilescu

15817-214/514

REST (or RESTful) API

API of a web service “that conforms to the constraints of the
REST architectural style.”
Uniform interface over HTTP requests

Send parameters to URL, server responds with the
representation of a resource (JSON, XML common)

Stateless: Each request is self-contained
Language independent, distributed

15917-214/514

Packages enough?
edu.cmu.cs214.santorini

edu.cmu.cs214.santorini.gui

edu.cmu.cs214.santorini.godcards

edu.cmu.cs214.santorini.godcards.impl

edu.cmu.cs214.santorini.logic

edu.cmu.cs214.santorini.utils

16017-214/514

Toward Module Systems
Stronger encapsulation sometimes desired

Expose only select public packages (and all public classes therein) to other
modules

Dynamic adding and removal of modules desired

OSGi (most prominently used by Eclipse)

● Bundle Java code with Manifest
● Framework handles loading with

multiple classloaders

Bundle-Name: Hello World
Bundle-SymbolicName: org.wikipedia.helloworld
Bundle-Description: A Hello World bundle
Bundle-ManifestVersion: 2
Bundle-Version: 1.0.0
Bundle-Activator: org.wikipedia.Activator
Export-Package:
org.wikipedia.helloworld;version="1.0.0"
Import-Package:
org.osgi.framework;version="1.3.0"

16117-214/514

The Module Pattern
var myRevealingModule = (function () {
 var privateVar = "Ben Cherry",
 publicVar = "Hey there!";

 function privateFunction() {
 console.log("Name:" + privateVar);
 }

 function publicSetName(strName) {
 privateVar = strName;
 }

 function publicGetName() {
 privateFunction();
 }

 // Reveal public pointers to
 // private functions and properties
 return {
 setName: publicSetName,
 greeting: publicVar,
 getName: publicGetName
 };
})();

myRevealingModule.setName("Paul Kinlan");

16217-214/514

Java Platform Module System
Since Java 9 (2017); built-in alternative to OSGi

Modularized JDK libraries itself

Several technical differences to OSGi (e.g., visibility vs access
protection, handling of diamond problem)

module A {
exports org.example.foo;
exports org.example.bar;

}
module B {

require A;
}

16317-214/514

Software Ecosystem

16417-214/514

Upstream Downstream

Extra Work

Avoiding dependencies
Encapsulating from change

16517-214/514

How to Break an API?

Photo Credit: axi11a (cc)

In Eclipse, you don’t.

In CRAN, you reach out to affected
downstream developers.

In Node.js, you increase
the major version number.

165

16617-214/514

The Diamond Problem

What now?

D
A

B

C

v1.4.1

v0.1.2v2.7.3

v2.7.5

16717-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Designing for Robustness in
Large & Distributed Systems

Jonathan Aldrich Bogdan Vasilescu

16817-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices

Designing for
bustness

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

16917-214/514

What Do We Test?

Code FacebookAndroid client

void buttonClicked() {

 render(getFriends());

}

List<Friend> getFriends() {

 Connection c = http.getConnection();

 FacebookAPI api = new FacebookAPI(c);

 return api.getFriends("john");

}

17017-214/514

Test Doubles
● Stand in for a real object under test
● Elements on which the unit testing depends (i.e. collaborators),

but need to be approximated because they are
○ Unavailable
○ Expensive
○ Opaque
○ Non-deterministic

● Not just for distributed systems!

http://www.kickvick.com/celebrities-stunt-doubles

http://www.kickvick.com/celebrities-stunt-doubles

17117-214/514

Fault injection
Code Mock

FacebookTest driver

class FacebookErrorStub implements FacebookAPI {

 void connect() {}

 int counter = 0;

 List<Node> getFriends(String name) {

 counter++;

if (counter % 3 == 0)

 throw new SocketException("Network is unreachable");

 else if (name.equals("john")) {

 return List.of(...);

 } // ...

 }

}

17217-214/514

Chaos Engineering
Experimenting on a distributed system in order to build confidence
in the system’s capability to withstand turbulent conditions in
production

17317-214/514

Considerations in HW6
● What should the framework do when a plugin fails?

○ Recall this figure? Think of framework as Service A, plugin as B, and the
API that B depends on ass as E

Principles of Software Construction:
Objects, Design, and Concurrency

Git Workflows in Practice

Jonathan Aldrich Bogdan Vasilescu

17517-214/514

git checkout master; git rebase bugFix
But master hasn't been updated, so:

17617-214/514

3) git cherry-pick C2 C4
Copy a series of commits below current location

17717-214/514

Highly Recommended

https://git-scm.com/book/en/v2

● Courtesy of Prof. Bogdan Vasilescu
(teaches this course last & next Spring)

● (second) most useful life skill you will
have learned in 214/514

17817-214/514

SVN (left) vs. Git (right)

• SVN stores changes to a base
version of each file

• Version numbers (1, 2, 3, …)
are increased by one after
each commit

• Git stores each version as a snapshot

• If files have not changed, only a link
to the previous file is stored

• Each version is referred by the SHA-1
hash of the contents

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

17917-214/514

Distributed version control
● Clients fully mirror the

repository
○ Every clone is a full backup of

all the data

● E.g., Git, Mercurial, Bazaar

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

18017-214/514

Aside: Git process

© Scott Chacon “Pro Git”

18117-214/514

GitFlow release branches (eventually into master)

no new features after this
point—only bug fixes, docs,
and other release tasks

18217-214/514

Semantic Versioning
Given a version number MAJOR.MINOR.PATCH,
increment the:
1. MAJOR version when you make incompatible API changes,
2. MINOR version when you add functionality in a backwards

compatible manner, and
3. PATCH version when you make backwards compatible bug

fixes.

18317-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

A Tour of the 23 GoF Design Patterns

Bogdan Vasilescu Jonathan Aldrich

18417-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

18517-214/514

Course so far…

16. Iterator
17. Mediator
18. Memento
19. Observer
20. State
21. Strategy
22. Template

method
23. Visitor

Creational:
1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

Structural:
1. Adapter
2. Bridge
3. Composite

9. Decorator
10. Façade
11. Flyweight
12. Proxy

Behavioral:
9. Chain of

Responsibility
10. Command
11. Interpreter

Not in the book:
● Model view controller
● Promise
● Module (JS)

18617-214/514

Warm Up Scenario

You are developing a mobile application for cities where users can
report potholes and similar problems (with photos) and city crews
can investigate, prioritize, and address reports.

Design problem 1: You want to create monthly reports. However,
different cities want this report slightly differently, with different text
on top and sorted in different ways. You want to vary text and
sorting in different ways.

18717-214/514

Singleton Illustration

public class Elvis {
 private static final Elvis ELVIS = new Elvis();
 public static Elvis getInstance() { return ELVIS; }
 private Elvis() { }
 ...
}

const elvis = { … }
function getElvis() {

export { getElvis }

18817-214/514

Decorator vs Strategy?

interface GameLogic {

isValidMove(w, x, y)

move(w, x, y)

}

class BasicGameLogic

implements GameLogic { … }

class AbstractGodCardDecorator

implements GameLogic { … }

class PanDecorator

extends AbstractGodCardDecorator

implements GameLogic { … }

interface GameLogic {

isValidMove(w, x, y)

move(w, x, y)

}

class BasicGameLogic

implements GameLogic {

constructor(board) { … }

isValidMove(w, x, y) { … }

move(w, x, y) { … }

}

class PanDecorator

extends BasicGameLogic {

move(w, x, y} { /* super.move(w,

x, y) + checkWinner */ }

}

18917-214/514

(New) Problem: we have to define a class for each
permutation of these two dimensions

image source: https://sourcemaking.com

How would you redesign this?

19017-214/514

Bridge Pattern: Decompose the component's interface and
implementation into orthogonal class hierarchies.

image source: https://sourcemaking.com

19117-214/514

Decorator vs Composite?
Cardinality is the difference, but also the intent.

19217-214/514

Proxy vs Decorator?
Some variants of proxy are almost
identical to decorator. But the intents of
the patterns are different.

Principles of Software Construction: Objects,
Design, and Concurrency

{Static & Dynamic} x {Typing & Analysis}

Jonathan Aldrich Bogdan Vasilescu

19417-214/514

How Do You Find Bugs?
● Run it?

Also: Static Analysis!

How?

● We know at compile time where getValue gets routed to

● getValue calls a method on i

● i can be null

19617-214/514

Static vs. Dynamic Typing
Okay, but:

https://octoverse.github.com/#geographical-distribution-of-active-users

19717-214/514

Static Analysis
● How?

○ Program analysis +
Vocabulary of patterns

https://deepsource.io/blog/introduction-static-code-analysis/

19817-214/514

Soundness & Precision
● Since we can’t perfectly analyze behavior statically

○ We may miss things by being cautious (unsound; false
negative)

○ We might identify non-problems (imprecision, false positive)

19917-214/514

TriCorder

20017-214/514

● Use more complicated logic
○ One example: Infer, at Facebook
○ (Google claims this won’t (easily)

scale to their mono-repo.)
● Use AI?

○ Facebook: Getafix, also integrates
with SapFix

○ Amazon: CodeGuru
○ Microsoft: IntelliSense in VSCode,

mostly refactoring/code
completion, trained on large
volumes of code

○ Mostly fairly simple ML (details
limited)

What else could we do?

20117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

DevOps (part 1)

Jonathan Aldrich Bogdan Vasilescu

20217-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

20317-214/514

Early days:
Boxed software,
infrequent releases

20417-214/514

20517-214/514

Heavy Automation, Lots of Tooling

20617-214/514

20717-214/514

Aside: The role of signaling

https://blog.devops4me.com/status-badges-in-azure-devops-pipelines/

20817-214/514 Release cycle of Facebook’s apps

20917-214/514

Diff lifecycle: diff ends up on main branch

(the use of one’s own products)

21017-214/514

Quasi-continuous push from master (1,000+ devs, 1,000 diffs/day); 10 pushes/day

21117-214/514

A/B Testing

21217-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Containers & Cloud (or DevOps part 2)

Jonathan Aldrich Bogdan Vasilescu Matt Davis

21317-214/514

Containers offer Virtualization on the OS

https://www.docker.com/resources/what-container/

21417-214/514

Docker images are layers
● Each action yields a new layer
● The base layer is typically an OS

○ E.g., “ubuntu:20.04”
● Data from previous layers is

“copy-on-write”

Consequences:

● Layer-stacks are easily reused
making images very light

● Security via IO permissions

https://ragin.medium.com/docker-what-it-is-how-images-are-structured-docker-vs-vm-and-
some-tips-part-1-d9686303590f

21517-214/514

There’s more in the cloud

https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-iaas/
Note: not everyone thinks of these as nested categories

https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-iaas/

21617-214/514 https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/serverless/web-app

21717-214/514

Managing Systems with Kubernetes
● Note how much this decouples the client from the code

○ In our previous systems, the client talked directly to the frontend
○ Now, to a data center,

which talks to a proxy, to a
pod, to a container, to code

21817-214/514

Finally, is the Cloud right for you?
● You’re borrowing someone else’s computer

○ That comes at a big premium
■ Hosting on-prem can be many times cheaper
■ I recall a thread where a Twitter engineer said their AWS bill would

be $100M+/month if they went that way
○ Also fewer guarantees

■ Some VMs are rarely available
■ Allocating large nrs of any kind almost certainly requires discussion

● Still worth it if you:
○ Are a small team, can’t spare cycles for system ops
○ Are growing quickly, won’t know your computing needs far out

21917-214/514

Looking Forward:
Beyond Code-Level Concerns

22017-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

22117-214/514

This Course
We focused on code-level concerns

Writing maintainable, extensible, robust, and correct
code

Design from classes to subsystems

Testing, concurrency, basic user interfaces

22217-214/514
222

22317-214/514

22417-214/514

22517-214/514

“But we’re CMU students and we
are really, really smart!”

22617-214/514

Software Engineering?

What is engineering? And how is it different from
hacking/programming?

22717-214/514

“Software Engineering” was a provocative term

1968 NATO Conference on Software
Engineering

22817-214/514

Compare to other forms of engineering
● e.g., Producing a car or bridge

○ Estimable costs and risks

○ Well-defined expected results

○ High quality

● Separation between plan and production

● Simulation before construction

● Quality assurance through measurement

● Potential for automation

22917-214/514

From Programming to Software Engineering

23017-214/514

23117-214/514

What happened with HealthCare.gov?
● Poor team and process coordination.

● Changing requirements.

● Inadequate quality assurance infrastructure.

● Architecture unsuited to the ultimate system load.

But….why??

23217-214/514

Boeing 737 MAX

23317-214/514

Software is written by humans
Sociotechnical system: interlinked system of people,
technology, and their environment

Key challenges in how to

● identify what to build (requirements)
● coordinate people building it (process)
● assure quality (speed, safety, fairness)
● contain risk, time and budget (management)
● sustain a community (open source, economics)

23417-214/514

Requirements

23517-214/514

Requirements
● What does the customer want?

● What is required, desired, not necessary? Legal, policy
constraints?

● Customers often do not know what they really want; vague,
biased by what they see; change their mind; get new ideas…

● Difficult to define requirements precisely

● (Are we building the right thing? Not: Are we building the thing
right?)

235

23617-214/514
236

23717-214/514

23817-214/514

Interviews

23917-214/514

24017-214/514

Process

24117-214/514

How to develop software?
1. Discuss the software that needs to be written

2. Write some code

3. Test the code to identify the defects

4. Debug to find causes of defects

5. Fix the defects

6. If not done, return to step 1

24217-214/514

Software Process
“The set of activities and associated results that
produce a software product”

What makes a good process?

Sommerville, SE, ed. 8

24317-214/514

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

24417-214/514

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

Trashing / Rework

Productive Coding

24517-214/514

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

Trashing / Rework

Productive Coding

Process: Cost and Time estimates, Writing Requirements, Design,
Change Management, Quality Assurance Plan,

Development and Integration Plan

24617-214/514

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

Productive Coding

 Trashing / Rework

 Process

24717-214/514

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

Productive Coding

Process

Trashing / Rework

24817-214/514

Example process issues
● Change Control: Mid-project informal agreement to changes suggested by

customer or manager. Project scope expands 25-50%

● Quality Assurance: Late detection of requirements and design issues.
Test-debug-reimplement cycle limits development of new features. Release
with known defects.

● Defect Tracking: Bug reports collected informally, forgotten

● System Integration: Integration of independently developed components at the
very end of the project. Interfaces out of sync.

● Source Code Control: Accidentally overwritten changes, lost work.

● Scheduling: When project is behind, developers are asked weekly for new
estimates.

24917-214/514

Process Costs

n(n − 1) / 2
communication links

25017-214/514

Process Costs

25117-214/514

Large teams (29 people) create around six times
as many defects as small teams (3 people) and
obviously burn through a lot more money. Yet,
the large team appears to produce about the
same mount of output in only an average of 12
days’ less time. This is a truly astonishing finding,
through it fits with my personal experience on
projects over 35 years.

- Phillip Amour, 2006, CACM 49:9

25217-214/514

Conway’s Law

“Any organization that designs a system (defined
broadly) will produce a design whose structure is a
copy of the organization's communication
structure.”

— Mel Conway, 1967

“If you have four groups working on a compiler,
you'll get a 4-pass compiler.”

25317-214/514

Module C

Module A

Module B

Congruence

25417-214/514

The Manifesto for Agile Software
Development (2001)

254

Value

Individuals and
interactions

over Processes and tools

Working software over
Comprehensive
documentation

Customer collaboration over Contract negotiation

Responding to change over Following a plan

25517-214/514

Pair Programming

Driver

Navigator

25617-214/514

Scrum Process

256

25717-214/514

Planning

25817-214/514

Measuring Progress?
“I’m almost done with the X. Component A is almost
fully implemented. Component B is finished except
for the one stupid bug that sometimes crashes the
server. I only need to find the one stupid bug, but
that can probably be done in an afternoon?”

25917-214/514

Almost Done Problem

● Last 10% of work ->
40% of time (or 20/80)

● Make progress
measureable

● Avoid depending entirely
on developer
estimations

259
time

%
 c

o
m

p
le

te
d

90
%

10

0%

reported
progress

planned actual

26017-214/514

Measuring Progress?
● Developer judgment: x% done

● Lines of code?

● Functionality?

● Quality?

26117-214/514

Project Planning
Identify constraints

Estimate project
parameters

Define milestones

Create schedule

activities begin

Check progress

Reestimate project
parameter

Refine schedule

renegotiate
constraints

Technical review

Problem?

no

yes

Done?
yes

no

Abort?

Budget,
Personal,
Deadlines

eve
ry 2-3

weeks
new

feature
requests

26217-214/514

Reasons for Missed Deadlines
● Insufficient staff (illnesses, staff turnover, ...)

● Insufficient qualitication

● Unanticipated difficulties

● Unrealistic time estimations

● Unanticipated dependencies

● Changing requirements, additional requirements

● Especially in student projects

○ Underestimated time for learning technologies

○ Uneven work distribution

○ Last-minute panic.

26317-214/514

Team productivity

263

● Brook's law: Adding people to a late software project
makes it later.

26417-214/514

π
Estimating effort

26517-214/514

Software Architecture

26617-214/514

Requirements

Miracle /
genius developers

Implementation

Architecture

26717-214/514

Software Architecture
"The software architecture of a computing system is
the set of structures needed to reason about the
system, which comprise software elements, relations
among them, and properties of both."

[Clements et al. 2010]

26817-214/514

Design vs. Architecture
Design Questions

● How do I add a menu item in Eclipse?

● How can I make it easy to add menu
items in Eclipse?

● What lock protects this data?

● How does Google rank pages?

● What encoder should I use for secure
communication?

● What is the interface between objects?

Architectural Questions

● How do I extend Eclipse with a plugin?

● What threads exist and how do they
coordinate?

● How does Google scale to billions of
hits per day?

● Where should I put my firewalls?

● What is the interface between
subsystems?

26917-214/514

Case Study:
Architecture Changes at Twitter

27017-214/514

27117-214/514

27217-214/514

Caching

27317-214/514

Redesign Goals
● Improve median latency; lower outliers

● Reduce number of machines 10x

● Isolate failures

● "We wanted cleaner boundaries with “related” logic being in one place"

○ encapsulation and modularity at the systems level (rather than at the class,
module, or package level)

● Quicker release of new features

○ "run small and empowered engineering teams that could make local decisions
and ship user-facing changes, independent of other teams"

performance

modifiability

maintainability

reliability

27417-214/514

Outcome: Rearchitecting Twitter
"This re-architecture has not only made the service more
resilient when traffic spikes to record highs, but also
provides a more flexible platform on which to build more
features faster, including synchronizing direct messages
across devices, Twitter cards that allow Tweets to become
richer and contain more content, and a rich search experience
that includes stories and users."

27517-214/514

Was the original architect wrong?

27617-214/514

Beyond testing: QA and Process
Many QA approaches

Code review, static analysis, formal verification, …

Which to use when, how much?

27717-214/514

How to get students to write tests?

27817-214/514

“We had initially scheduled time to write tests for both
front and back end systems, although this never

happened.”

27917-214/514

“Due to the lack of time, we could only conduct
individual pages’ unit testing. Limited testing was done
using use cases. Our team felt that this testing process

was rushed and more time and effort should be
allocated.”

28017-214/514

Time estimates (in hours):

Activity Estimated Actual

testing plans 3 0

unit testing 3 1

validation testing 4 2

test data 1 1

28117-214/514

How to get developers to write tests?

28217-214/514

Test Driven Development
● Tests first!

● Popular agile technique

● Write tests as specifications before code

● Never write code without a failing test

● Claims:

• Design approach toward testable design

• Think about interfaces first

• Avoid writing unneeded code

• Higher product quality (e.g. better code, less defects)

• Higher test suite quality

• Higher overall productivity
(CC BY-SA 3.0)
Excirial

http://en.wikipedia.org/wiki/User:Excirial

28317-214/514

28417-214/514

How to get developers to use static analysis?

28517-214/514

15-313 Software Engineering285

https://help.github.com/articles/using-pull-requests/

28617-214/514

28717-214/514

How to get developers to use static analysis?

28817-214/514

Are code reviews worth it?

28917-214/514

Summary
Looking back at one semester of code-level design,
testing, and concurrency

Looking forward to human aspects of software
engineering, including process and requirements

There are many other courses in SE at CMU, consider
taking them!

